Current Applications and Trends in Rabbit Nutraceuticals
Abstract
:1. Introduction
2. Effect of Nutraceutical Plant Products on Rabbit Production and Health Status
2.1. Thyme
2.2. Garden Cress
2.3. Azolla
2.4. Turmeric
2.5. Olive
3. Effect of Nutraceutical Animal Products on Rabbit Production and Health Status
3.1. Milk Products
3.2. Honeybee Products
3.3. Insect Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sabrout, K. Effect of rearing system and season on behaviour, productive performance and carcass quality of rabbit: A review. J. Anim. Behav. Biometeorol. 2018, 6, 102–108. [Google Scholar] [CrossRef] [Green Version]
- El-Sabrout, K.; Aggag, S. Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit. Meat Sci. 2018, 137, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Gerini, F.; Ikram, A.; Saeed, F.; Feng, X.; Chen, Y. Rabbit meat-production, consumption and consumers’ attitudes and behavior. Sustainability 2023, 15, 2008. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Aggag, S. Use of inter simple sequence repeats and protein markers in assessing genetic diversity and relationships among four rabbit genotypes. World Rabbit Sci. 2015, 23, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Abdelnour, S.A.; El-Ratel, I.T.; Peris, S.I.; El-Raghi, A.A.; Fouda, S.F. Effects of dietary thyme essential oil on blood haematobiochemical, redox status, immunological and reproductive variables of rabbit does exposed to high environmental temperature. Ital. J. Anim. Sci. 2022, 21, 51–61. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, F.; Park, S.; Balasubramanian, B.; Liu, W. Impacts of heat stress on rabbit immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention. Front. Vet. Sci. 2022, 9, 906084. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Metwally, M.G.; Bahgat, L.B.; Naiel, M.A. Pumpkin seed oil–supplemented diets promoted the growth productivity, antioxidative capacity, and immune response in heat-stressed growing rabbits. Trop. Anim. Health Prod. 2023, 55, 55. [Google Scholar] [CrossRef]
- El-Gindy, Y.M.; Zahran, S.M.; Ahmed, M.H.; Salem, A.Z.; Misbah, T.R. Influence of dietary supplementation of clove and rosemary essential oils or their combination on growth performance, immunity status, and blood antioxidant of growing rabbits. Trop. Anim. Health Prod. 2021, 53, 482. [Google Scholar] [CrossRef]
- Dabbou, S.; Rotolo, L.; Kovitvadhi, A.; Bergagna, S.; Dezzutto, D.; Barbero, R.; Rubiolo, P.; Schiavone, A.; De Marco, M.; Helal, A.N.; et al. Rabbit dietary supplementation with pale purple coneflower. 1. Effects on the reproductive performance and immune parameters of does. Animal 2016, 10, 1101–1109. [Google Scholar] [CrossRef]
- Cardinali, R.; Cullere, M.; Bosco, A.D.; Mugnai, C.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Marinucci, M.T.; Zotte, A.D. Oregano, rosemary and vitamin E dietary supplementation in growing rabbits: Effect on growth performance, carcass traits, bone development and meat chemical composition. Livest. Sci. 2015, 175, 83–89. [Google Scholar] [CrossRef]
- Agradi, S.; Draghi, S.; Cotozzolo, E.; Barbato, O.; Castrica, M.; Quattrone, A.; Sulçe, M.; Vigo, D.; Menchetti, L.; Ceccarini, M.R.; et al. Goji berries supplementation in the diet of rabbits and other livestock animals: A mini-review of the current knowledge. Front. Vet. Sci. 2022, 8, 823589. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, H.A.; Fathalla, S.I.; Assayed, M.E.; Masoad, S.R.; Nafeaa, A.A. Physiological studies on the effect of fenugreek on productive performance of white New-Zealand rabbit does. Food Nutr. Sci. 2016, 7, 1276–1289. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Rahman, K.A.; Taie, H.F.; Soliman, A.I.; Assem, M.A. Performance of growing rabbits fed on some agroindustrial by-products. Egypt. J. Rabbit Sci. 2012, 22, 41–54. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Elkhateeb, F.S.; Ismail, Z.S.; Ghazalah, A.A.; Lohakare, J. Combined effects of fenugreek seeds and probiotics on growth performance, nutrient digestibility, carcass criteria, and serum hormones in growing rabbits. Livest. Sci. 2021, 251, 104616. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Abd Elhamid, A.E.; Nagadi, S.A.; Mandour, M.A.; Hassan, S.S. Bee pollen and propolis as dietary supplements for rabbit: Effect on reproductive performance of does and on immunological response of does and their offspring. J. Anim. Physiol. Anim. Nutr. 2019, 103, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Kishawy, A.T.Y.; Amer, S.A.; Osman, A.; Elsayed, S.A.M.; Abd El-Hack, M.E.; Swelum, A.A.; Ba-Awadh, H.; Saadeldin, I.M. Impacts of supplementing growing rabbit diets with whey powder and citric acid on growth performance, nutrient digestibility, meat and bone analysis, and gut health. AMB Express 2018, 8, 86. [Google Scholar] [CrossRef]
- Gasco, L.; Dabbou, S.; Gai, F.; Brugiapaglia, A.; Schiavone, A.; Birolo, M.; Xiccato, G.; Trocino, A. Quality and consumer acceptance of meat from rabbits fed diets in which soybean oil is replaced with Black Soldier fly and yellow mealworm fats. Animals 2019, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Delis-Hechavarria, E.A.; Guevara-Gonzalez, R.G.; Ocampo-Velazquez, R.V.; Gomez-Soto, J.G.; Vargas-Hernandez, M.; Parola-Contreras, I.; Torres-Pacheco, I. Functional Food for Rabbits: Current Approaches and Trends to Increase Functionality. Food Rev. Int. 2021, 9, 2057–2074. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Khalifah, A.; Mishra, B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet. World 2023, 16, 369–379. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple beneficial applications and modes of action of herbs in poultry health and production—A review. Int. J. Pharmacol. 2015, 11, 152–176. [Google Scholar] [CrossRef] [Green Version]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; et al. Potential role of important nutraceuticals in poultry performance and health—A comprehensive review. Res. Vet. Sci. 2021, 137, 9–29. [Google Scholar] [CrossRef] [PubMed]
- El-Saadany, A.S.; El-Barbary, A.M.; Shreif, E.Y.; Elkomy, A.; Khalifah, A.M.; El-Sabrout, K. Pumpkin and garden cress seed oils as feed additives to improve the physiological and productive traits of laying hens. Ital. J. Anim. Sci. 2022, 21, 1047–1057. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Naggar, K.; Madkour, M. Nutrigenomics and nutrigenetics in poultry nutrition: An updated review. World’s Poult. Sci. J. 2022, 78, 377–396. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Aggag, S.; Mishra, B. Advanced practical strategies to enhance table egg production. Scientifica 2022, 2022, 1393392. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Wang, L.; Zhou, X.; Wu, X.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Mao, X.; Zheng, P.; et al. Effects of essential oil on growth performance, digestibility, immunity, and intestinal health in broilers. Poult. Sci. 2021, 100, 101242. [Google Scholar] [CrossRef] [PubMed]
- Ciani, F.; Maruccio, L.; Cocchia, N.; d’Angelo, D.; Carotenuto, D.; Avallone, L.; Namagerdi, A.A.; Tafuri, S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J. Adv. Vet. Anim. Res. 2021, 8, 173–184. [Google Scholar] [CrossRef]
- Yadav, A.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry—A review. J. Exp. Biol. Agric. Sci. 2016, 4, 368–383. [Google Scholar] [CrossRef]
- Saki, A.A.; Aliarabi, H.; Hosseini Siyar, S.A.; Salari, J.; Hashemi, M. Effect of a phytogenic feed additive on performance, ovarian morphology, serum lipid parameters and egg sensory quality in laying hen. Vet. Res. Forum Int. Q. J. 2014, 5, 287–293. [Google Scholar]
- El-Ghousein, S.S.; Al-Beitawi, N.A. The effect of feeding of crushed thyme (Thymus valgaris L) on growth, blood constituents, gastrointestinal tract and carcass characteristics of broiler chickens. J. Poult. Sci. 2009, 46, 100–104. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Wang, W.; Gan, L.; Li, Z.; Guo, S.; Guo, Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fki, I.; Bouaziz, M.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem. 2005, 13, 5362–5370. [Google Scholar] [CrossRef]
- Franz, C.; Baser, K.H.; Windisch, W.M. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flav. Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Metabolism and nutrition: Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Chrastinová, L.; Chrenková, M.; Formelová, Z.; Poláĉiková, M.; Čobanová, K.; Lauková, A.; Glatzová, E.B.; Štrkolcová, G.; Kandričáková, A.; Rajský, M.; et al. Effect of combinative dietary zinc supplementation and plant thyme extract on growth performance and nutrient digestibility in the diet for growing rabbits. Slovak J. Anim. Sci. 2018, 51, 52–60. [Google Scholar]
- Acamovic, T.; Brooker, J.D. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc. 2005, 64, 403–412. [Google Scholar] [CrossRef]
- Griela, E.; Paraskeuas, V.; Mountzouris, K.C. Effects of diet and phytogenic inclusion on the antioxidant capacity of the broiler chicken gut. Animals 2021, 11, 739. [Google Scholar] [CrossRef]
- Bacova, K.; Zitterl-Eglseer, K.; Chrastinova, L.; Laukova, A.; Madarova, M.; Gancarcikova, S.; Sopkova, D.; Andrejcakova, Z.; Placha, I. Effect of Thymol addition and withdrawal on some blood parameters, antioxidative defence system and fatty acid profile in rabbit muscle. Animals 2020, 10, 1248. [Google Scholar] [CrossRef]
- Ezzat Ahmed, A.; Alkahtani, M.A.; Abdel-Wareth, A.A. Thyme leaves as an eco-friendly feed additive improves both the productive and reproductive performance of rabbits under hot climatic conditions. Vet. Med.-Czech 2020, 65, 553–563. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Taha, E.M.; Südekum, K.H.; Lohakare, J. Thyme oil inclusion levels in a rabbit ration: Evaluation of productive performance, carcass criteria and meat quality under hot environmental conditions. Anim. Nutr. 2018, 4, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Benlemlih, M.; Barchan, A.; Aarab, A.; Bakkali, M.; Arakrak, A.; Laglaoui, A. Effect of Dietary Dried Fennel and Oregano and Thyme Supplementation on Zootechnical Parameters of Growing Rabbits. World Vet. J. 2020, 10, 332–337. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Metwally, A.E. Productive and physiological response of male rabbits to dietary supplementation with thyme essential oil. Animals 2020, 10, 1844. [Google Scholar] [CrossRef] [PubMed]
- Placha, I.; Chrastinova, L.; Laukova, A.; Cobanova, K.; Takacova, J.; Strompfova, V.; Chrenkova, M.; Formelova, Z.; Faix, S. Effect of thyme oil on small intestine integrity and antioxidant status, phagocytic activity and gastrointestinal microbiota in rabbits. Acta Vet. Hung. 2013, 61, 197–208. [Google Scholar] [CrossRef]
- Alazab, A.; Ragab, M.; Fahim, H.; El Desoky, A.; Azouz, H.; Shazly, S. Effect of Spirulina platensis supplementation in growing rabbit’s diet on productive performance and economic efficiency. J. Anim. Poult. Prod. 2020, 11, 325–330. [Google Scholar] [CrossRef]
- Gerencsér, Z.S.; Szendrő, Z.S.; Matics, Z.S.; Radnai, I.; Kovács, M.; Nagy, I.; Cullere, M.; Dal Bosco, A.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on apparent digestibility and productive performance of growing rabbits. World Rabbit Sci. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Gerencsér, Z.; Szendrő, Z.; Mugnai, C.; Cullere, M.; Kovács, M.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci. 2014, 96, 114–119. [Google Scholar] [CrossRef]
- Kovács, M.; Tuboly, T.; Mézes, M.; Balogh, K.M.; Gerencsér, Z.; Matics, Z.; Dal Bosco, A.; Szendrő, Z.; Tornyos, G.; Hafner, D.; et al. Effect of Dietary Supplementation of Spirulina (Arthrospira Platensis) and Thyme (Thymus Vulgaris) on Serum Biochemistry, Immune Response and Antioxidant Status of Rabbits. Ann. Anim. Sci. 2016, 16, 181–195. [Google Scholar] [CrossRef]
- El-Ratel, I.T.; El-Kholy, K.H.; Mousa, N.A.; El-Said, E.A. Impacts of selenium nanoparticles and spirulina alga to alleviate the deleterious effects of heat stress on reproductive efficiency, oxidative capacity and immunity of doe rabbits. Anim. Biotechnol. 2023, 1–14. [Google Scholar] [CrossRef]
- Abd El-Azeem, A.E.; Al-Sagheer, A.A.; Daader, A.H.; Bassiony, S.M. Effect of dietary supplementation with betaine, thyme oil and their mixtures on productive performance of growing rabbits. Zagazig J. Agric. Res. 2019, 46, 815–828. [Google Scholar]
- Bryan, R.M.; Shailesh, N.S.; Jill, K.W.; Steven, F.V.; Roque, L.E. Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils. Ind. Crops Prod. 2009, 30, 199–205. [Google Scholar]
- Deshmukh, Y.R.; Thorat, S.S.; Mhalaskar, S.R. Influence of garden cress seed (Lepidium sativum L.) bran on quality characteristics of cookies. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 586–593. [Google Scholar]
- Al-Sayed, H.M.A.; Zidan, N.S.; Abdelaleem, M.A. Utilization of garden cress seeds (Lepidium sativum L.) as natural source of protein and dietary fiber in noodles. Int. J. Pharm. Res. Allied Sci. 2019, 8, 17–28. [Google Scholar]
- Bilal, R.M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M.R.; Alagawany, M.; Hassan, F.U.; Elnesr, S.S.; Elwan, H.; Qiu, H.; et al. Olive oil: Nutritional applications, beneficial health aspects and its prospective application in poultry production. Front. Pharmacol. 2021, 12, 723040. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Diwakar, B.T.; Dutta, P.K.; Lokesh, B.R.; Naidu, K.A. Physicochemical properties of garden cress (Lepidium sativum L.) seed oil. J. Am. Oil Chem. Soc. 2010, 87, 539–548. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Calani, L.; Mazzeo, T.; Rio, D.D.; Pellegrini, N.; De Feo, V. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules 2012, 17, 10306–10321. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.J. Omega-3 fatty acids in ADHD and related neuro-developmental disorders. Int. Rev. Psychiatry 2006, 18, 155–172. [Google Scholar] [CrossRef]
- Shawle, K.; Urge, M.; Animut, G. Effect of different levels of Lepidium sativum L. on growth performance, carcass characteristics, hematology and serum biochemical parameters of broilers. SpringerPlus 2016, 5, 1441. [Google Scholar] [CrossRef] [Green Version]
- Azene, M.; Habte, K.; Tkuwab, H. Nutritional, health benefits and toxicity of underutilized garden cress seeds and its functional food products: A review. Food Prod. Process Nutr. 2022, 4, 33. [Google Scholar] [CrossRef]
- El-Gindy, Y.M.; Zahran, S.M.; Ahmed, M.H.; Idres, A.Y.; Aboolo, S.H.; Morshedy, S.A. Reproductive performance and milk yield of rabbits fed diets supplemented with garden cress (Lepidium sativum) seed. Sci. Rep. 2022, 12, 17083. [Google Scholar] [CrossRef] [PubMed]
- Morshedy, S.A.; Zahran, S.M.; Sabir, S.A.; El-Gindy, Y.M. Effects of increasing levels of orange peel extract on kit growth, feed utilization, and some blood metabolites in the doe rabbits under heat stress conditions. Anim. Biotechnol. 2022, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- El Naggar, S.; El-Mesery, H.S. Azolla pinnata as unconventional feeds for ruminant feeding. Bull. Natl. Res. Cent. 2022, 46, 66. [Google Scholar] [CrossRef]
- Abdelatty, A.M.; Mandouh, M.I.; Mousa, M.; Mansour, H.A.; Ford, H.R.; Shaheed, I.B.; Elolimy, A.A.; Prince, A.; El-Sawy, M.; AboBakr, H.; et al. Sun-dried Azolla leaf meal at 10% dietary inclusion improved growth, meat quality, and increased skeletal muscle Ribosomal protein S6 kinase β1 abundance in growing rabbit. Animal 2021, 15, 100348. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.B.; Roy, D.; Kumar, V.; Bhattacharyya, A.; Kumar, M.; Kushwaha, R.; Vaswani, S. Effect of feeding different levels of Azolla pinnata on blood biochemicals, hematology and immunocompetence traits of Chabro chicken. Vet. World 2016, 9, 192–198. [Google Scholar] [CrossRef]
- Al-Rekabi, M.M.; Ali, N.A.; Abbas, F.R. Effect of partial and total substitution for Azolla plant (Azolla pinnata) powder instead of soybean meal in broiler chickens diets on blood biochemical traits. Plant Arch. 2020, 20, 1344–1348. [Google Scholar]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Khan, M.S.; Saeed, M.; Kamboh, A.A.; Khan, R.U.; Farooq, Z.; Imran, S.; Farid, M.U. Importance of Azolla plant in poultry production. World’s Poult. Sci. J. 2022, 78, 789–802. [Google Scholar] [CrossRef]
- Abou-Zeid, A.; Mohamed, F.F.; Radwan, M.S.M. Assessment of the nutritive value of dried Azolla hay as a possible feed ingredient for growing NZW rabbits. Egyptian J. Rabbit Sci. 2001, 11, 1–21. [Google Scholar]
- Anitha, K.C.; Rajeshwari, Y.B.; Prasanna, S.B.; Shilpa Shree, J. Nutritive Evaluation of Azolla as Livestock Feed. J. Exp. Biol. Agric. Sci. 2016, 4, 670–674. [Google Scholar]
- Sireesha, K.; Chakravarthi, M.K.; Naveen, Z.; Naik, B.R.; Babu, P.R. Carcass characteristics of New Zealand white rabbits fed with graded levels of Azolla (Azolla pinnata) in the basal diet. Int. J. Livest. Res. 2017, 7, 167–171. [Google Scholar] [CrossRef]
- Abdelatty, A.M.; Mandouh, M.I.; Mohamed, S.A.; Busato, S.; Badr, O.A.; Bionaz, M.; Al-Mokaddem, A.K.; Moustafa, M.M.; Farid, O.A.; Al-Mokaddem, A.K. Azolla leaf meal at 5% of the diet improves growth performance, intestinal morphology and p70s6k1 activation, and affects cecal microbiota in broiler chicken. Animal 2021, 15, 100362. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, M.; Fahim, H.N.; Shazly, S.A.; Ragab, M.S.; Alazab, A.; Beshara, M. Effect of Partially Substitution of Soybean Protein with Azolla (Azolla pinnata) on Productive Performance and Carcass Traits of Growing Rabbits. J. Anim. Poult. Prod. 2021, 12, 197–203. [Google Scholar] [CrossRef]
- Govindarajan, V.S. Turmeric-chemistry, technology, and quality. Crit. Rev. Food Sci. Nutr. 1980, 12, 199–301. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Moghaddam, M. The effects of turmeric, cinnamon, ginger and garlic powder nutrition on antioxidant enzymes’ status and hormones involved in energy metabolism of broilers during heat stress. Iran. J. Appl. Anim. Sci. 2018, 8, 125–130. [Google Scholar]
- Sugiharto, S. Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa)—A short review. J. Anim. Behav. Biometeorol. 2020, 8, 215–222. [Google Scholar] [CrossRef]
- Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef]
- Zava, D.T.; Dollbaum, C.M.; Blen, M. Estrogen and progestin bioactivity of foods, herbs, and spices. Exp. Biol. Med. 1998, 217, 369–378. [Google Scholar] [CrossRef]
- Lantz, R.C.; Chen, G.J.; Solyom, A.M.; Jolad, S.D.; Timmermann, B.N. The effect of turmeric extracts on inflammatory mediator production. Phytomedicine 2005, 12, 445–452. [Google Scholar] [CrossRef]
- Alagawany, M.; Ashour, E.A.; Reda, F.M. Effect of dietary supplementation of garlic (Allium Sativum) and turmeric (Curcuma Longa) on growth performance, carcass traits, blood profile and oxidative status in growing rabbits. Ann. Anim. Sci. 2016, 16, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Sirotkin, A.V.; Kádasi, A.; Štochmaľová, A.; Baláži, A.; Földešiová, M.; Makovicky, P.J.; Chrenek, P.; Harrath, A.H. Effect of turmeric on the viability, ovarian folliculogenesis, fecundity, ovarian hormones and response to luteinizing hormone of rabbits. Animal 2017, 12, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Kaegon, S.G.; Dim, J.; George, O.S. Effects of graded levels of Turmeric (Curcuma longa) meal on the Serum metabolites of growing Rabbits. Niger. J. Anim. Sci. 2018, 20, 247–250. [Google Scholar]
- El-Rawi, E.; Jasim, A.Y.; Ibrahim, E. Effect of adding turmeric powder to local buck rabbit’s rations on some production and blood traits. In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, Online. 28–30 June 2020. [Google Scholar]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Jha, R. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Abu Hafsa, S.H.; Senbill, H.; Basyony, M.M.; Hassan, A.A. Amelioration of Sarcoptic Mange-Induced Oxidative Stress and Growth Performance in Ivermectin-Treated Growing Rabbits Using Turmeric Extract Supplementation. Animals 2021, 11, 2984. [Google Scholar] [CrossRef]
- Okanlawon, E.O.; Bello, K.O.; Akinola, O.S.; Oluwatosin, O.; Irekhore, O.T.; Ademolue, R.O. Evaluation of growth, reproductive performance and economic benefits of rabbits fed diets supplemented with turmeric (Curcuma longa) powder. Egypt. Poult. Sci. J. 2020, 40, 701–714. [Google Scholar] [CrossRef]
- Saleh, A.; Alzawqari, M. Effects of replacing yellow corn with olive cake meal on growth performance, plasma lipid profile, and muscle fatty acid content in broilers. Animals 2021, 11, 2240. [Google Scholar] [CrossRef]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Litina, D.H.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Al-Harthi, M. The effect of different dietary contents of olive cake with or without Saccharomyces cerevisiae on egg production and quality, inner organs and blood constituents of commercial layers. Eur. Poult. Sci. 2015, 79, 83–87. [Google Scholar] [CrossRef]
- Al-Harthi, M.A. The efficacy of using olive cake as a by-product in broiler feeding with or without yeast. Ital. J. Anim. Sci. 2016, 15, 512–520. [Google Scholar] [CrossRef]
- Abd El-Moneim, A.E.; Sabic, E.M. Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 2019, 28, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, C.; Cimrin, T.; Yakar, Y.; Alasahan, S. Effects of olive cake meal on serum constituents and fatty acid levels in breast muscle of Japanese quail. S. Afr. J. Anim. Sci. 2020, 50, 874–880. [Google Scholar] [CrossRef]
- Al-Harthi, M. The effect of olive cake, with or without enzymes supplementation, on growth performance, carcass characteristics, lymphoid organs and lipid metabolism of broiler chickens. Braz. J. Poult. Sci. 2017, 19, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.F.; Kim, I.H. Effects of dietary olive oil on egg quality, serum cholesterol characteristics, and yolk fatty acid concentrations in laying hens. J. Appl. Anim. Res. 2014, 42, 233–237. [Google Scholar] [CrossRef]
- Harwood, J.L.; Yaqoob, P. Nutritional and health aspects of olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 685–697. [Google Scholar] [CrossRef]
- Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Vilas Boas, L. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–396. [Google Scholar] [CrossRef]
- Quintero-Flórez, A.; Sinausia Nieva, L.; Sánchez-Ortíz, A.; Beltrán, G.; Perona, J.S. The fatty acid composition of virgin olive oil from different cultivars is determinant for foam cell formation by macrophages. J. Agric. Food Chem. 2015, 63, 6731–6738. [Google Scholar] [CrossRef]
- De La Lastra, C.; Barranco, M.; Motilva, V.; Herrerías, J. Mediterrranean diet and health biological importance of olive oil. Curr. Pharm. Des. 2001, 7, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Paiva-Martins, F.; Ribeirinha, T.; Silva, A.; Gonçalves, R.; Pinheiro, V.; Mourão, J.L.; Outor-Monteiro, D. Effects of the dietary incorporation of olive leaves on growth performance, digestibility, blood parameters and meat quality of growing pigs. J. Sci. Food Agric. 2014, 94, 3023–3029. [Google Scholar] [CrossRef] [PubMed]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive leaf addition increases olive oil nutraceutical properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.; Etiene, N.; Garcia-Alonso, M.; de Pascual-Teresa, S.; Minihane, A.M.; Weinberg, P.D.; Rimbach, G. Antioxidant and anti-atherogenic activities of olive oil phenolics. Int. J. Vitaminol. Nutr. Res. 2010, 75, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, S.; Kececi, T.; Haliloglu, S. Effects of zinc and vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens. Res. Vet. Sci. 2001, 71, 135–139. [Google Scholar] [CrossRef]
- Bar, A.; Vax, E.; Striem, S. Relationships among age, eggshell thickness and vitamin D metabolism and its expression in the laying hen. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 123, 147–154. [Google Scholar] [CrossRef]
- Salama, W.A.; Basyony, M.M.; Suliman, M.A.; Matari, R.I.M.; Hassanein, H.A. Effect of feeding olive cake supplemented with or without bentonite on performance of growing rabbis. Egypt. J. Rabbit Sci. 2016, 26, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Castellini, C.; Cardinali, R.; Mourvaki, E.; Moscati, L.; Battistacci, L.; Servili, M.; Taticchi, A. Olive cake dietary supplementation in rabbit: Immune and oxidative status. Ital. J. Anim. Sci. 2007, 6, 713–715. [Google Scholar] [CrossRef]
- Younan, G.; Mohamed, M.; Morsy, W.A. Effect of dietary supplementation of olive leaf extract on productive performance, blood parameters and carcass traits of growing rabbits. Egypt. J. Nutr. Feeds 2018, 22, 173–182. [Google Scholar] [CrossRef]
- Mattioli, S.; Dal Bosco, A.; Duarte, J.M.; D’amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. 2019, 51, 98–105. [Google Scholar] [CrossRef]
- Mattioli, S.; Rosignoli, P.; D’Amato, R.; Fontanella, M.C.; Regni, L.; Castellini, C.; Proietti, P.; Elia, A.C.; Fabiani, R.; Beone, G.M.; et al. Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits. Animals 2020, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Maranesi, M.; Dall’Aglio, C.; Acuti, G.; Cappelli, K.; Trabalza Marinucci, M.; Galarini, R.; Suvieri, C.; Zerani, M. Effects of dietary polyphenols from olive mill waste waters on inflammatory and apoptotic effectors in rabbit ovary. Animals 2021, 11, 1727. [Google Scholar] [CrossRef]
- Deeth, H.; Tamime, A. Yogurt: Nutritive and therapeutic aspects. J. Food Prot. 1981, 44, 78–86. [Google Scholar] [CrossRef]
- Atallah, A.A.; Osman, A.; Sitohy, M.; Gemiel, D.G.; El-Garhy, O.H.; Azab, I.H.E.; Fahim, N.H.; Abdelmoniem, A.M.; Mehana, A.E.; Imbabi, T.A. Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis. Foods 2021, 10, 2493. [Google Scholar] [CrossRef]
- Castrica, M.; Menchetti, L.; Agradi, S.; Curone, G.; Vigo, D.; Pastorelli, G.; Di Giancamillo, A.; Modina, S.C.; Riva, F.; Serra, V.; et al. Effect of Bovine Colostrum Dietary Supplementation on Rabbit Meat Quality. Foods 2022, 11, 3433. [Google Scholar] [CrossRef]
- Rastad, A.; Samie, A.; Daneshvar, F. Effect of bactocell and dry whey on performance and carcass characteristics of broiler chickens. J. Crop Prod. Proc. 2008, 12, 473–480. [Google Scholar]
- Hayes, A.; Cribb, P.J. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Norton, L.E.; Layman, D.K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J. Nutr. 2006, 136, 533S–537S. [Google Scholar] [CrossRef] [Green Version]
- Shariatmadari, F.; Forbes, J. Performance of broiler chickens given whey in the food and/or drinking water. Br. Poult. Sci. 2005, 46, 498–505. [Google Scholar] [CrossRef]
- Madras-Majewska, B.; Ochnio, L.; Ochnio, M. Use of bee products in livestock nutrition and therapy. Med. Weter. 2015, 71, 94–99. [Google Scholar]
- Attia, Y.A.; Giorgio, G.M.; Addeo, N.F.; Asiry, K.A.; Piccolo, G.; Nizza, A.; Di Meo, C.; Alanazi, N.A.; Al-qurashi, A.D.; El-Hack, M.E.; et al. COVID-19 pandemic: Impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. Environ. Sci. Pollut. Res. Int. 2022, 29, 9592–9605. [Google Scholar] [CrossRef]
- Abuoghaba, A.A.; Ismail, I.I. Impact of bee pollen supplementation on productive performance, some hematological parameters, blood constituents and semen physical characteristics of Sinai chickens. Egypt. Poult. Sci. J. 2018, 38, 621–635. [Google Scholar]
- Ezzat, W.; Rizk, A.M.; Mohamed, H.S.; Fathey, I.A. Effect of gibberellic acid and royal jelly injection on some productive, reproductive and physiological traits in matrouh chickens strain during summer season. J. Prod. Dev. 2020, 25, 169–194. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Alagawany, M.; Taha, A.E.; Elnesr, S.S.; Abd Elmonem, O.M.; Swelum, A.A. Useful impacts of royal jelly on reproductive sides, fertility rate and sperm traits of animals. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1798–1808. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; Hassanein, E.M.; Simal-Gandara, J. Improving reproductive performance and health of mammals using honeybee products. Antioxidants 2021, 10, 336. [Google Scholar] [CrossRef]
- Ojebiyi, O.O.; Yusuff, A.; Oladunjoye, I.O.; Babarinde, S.A. Nutritional evaluation of honeybee slum gum meal as replacement for maize in the feed of growing rabbits. J. Biol. Agric. Healthc. 2013, 3, 96–101. [Google Scholar]
- Attia, Y.A.; Bovera, F.; El-Tahawy, W.S.; El-Hanoun, A.M.; Al-Harthi, M.A.; Habiba, H.I. Productive and reproductive performance of rabbits does as affected by bee pollen and/or propolis, inulin and/or mannan-oligosaccharides. World Rabbit Sci. 2015, 23, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Zeedan, K.; El-Neney, B.A.M.; Aboughaba, A.A.A.; El-Kholy, K. Effect of bee pollen at different levels as natural additives on immunity and productive performance in rabbit males. Egypt. Poult. Sci. J. 2017, 37, 213–231. [Google Scholar]
- Al-Homidan, I.; Fathi, M.; Abdelsalam, M.; Ebied, T.; Abou-Emera, O.; Mostafa, M.; El-Razik, M.A.; Shehab-El-Deen, M. Effect of Propolis Supplementation and Breed on Growth Performance, Immunity, Blood Parameters, and Cecal Microbiota in Growing Rabbits. Anim. Biosci. 2022, 35, 1606–1615. [Google Scholar] [CrossRef]
- Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; García-Muñiz, J.G.; Fallas-López, M.; Hernández-García, P.A. Supplying bee pollen and propolis to growing rabbits: Effects on growth performance, blood metabolites, and meat quality. Life 2022, 12, 1987. [Google Scholar] [CrossRef]
- Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Ramírez-Valverde, R.; Fallas-López, M. Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis. Animals 2023, 13, 439. [Google Scholar] [CrossRef]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feas, X.; Estevinho, L.M. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Guo-Feng, Z.; Kai-Dong, D.; Nai-Feng, Z.; Qi-Yu, D. Effects of supplementary bee pollen and its polysaccharides on nutrient digestibility and serum biochemical parameters in Holstein calves. Anim. Prod. Sci. 2015, 55, 1318–1323. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Alagawany, M.; Farag, M.R.; Elnesr, S.S. Beneficial impacts of bee pollen in animal production, reproduction and health. J. Anim. Physiol. Anim. Nutr. 2019, 103, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Wang, Q.; Xin, B.; Wang, H. Trophic effect of bee pollen on small intestine in broiler chickens. J. Med. Food 2007, 10, 276–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef]
- Greenaway, W.; May, J.; Scaysbrook, T.; Whatley, F.R. Identification by gas chromatography- mass spectrometry of 150 compounds in propolis. Z. Naturforschung 1991, 42, 111–121. [Google Scholar] [CrossRef]
- Markham, K.E.; Mitchel, K.A.; Wilkins, A.L.; Daldy, J.A.; Lu, Y. HPLC and GCMS identification of the major organic constituents in New Zealand propolis. Phytochemistry 1996, 42, 205–211. [Google Scholar] [CrossRef]
- Saeed, M.; Kalhoro, S.A.; Naveed, M.; Hassan, F.U.; Umar, M.; Rashid, M.; Memon, S.A.; Soomro, F.; Arain, M.A.; Chao, S. Prospects of royal jelly as a potential natural feed additive in poultry diets. World’s Poult. Sci. J. 2018, 74, 499–508. [Google Scholar] [CrossRef]
- Seven, P.T.; Sur Arslan, A.; Özçelik, M.; Gülcihan Şimşek, Ü.; Seven, İ. Effects of propolis and royal jelly dietary supplementation on performance, egg characteristics, lipid peroxidation, antioxidant enzyme activity and mineral levels in Japanese quail. Eur. Poult. Sci. 2016, 80, 138. [Google Scholar]
- Elnagar, S.A.; Elghalid, O.A.; Abd-Elhady, A.M. Royal jelly: Can it reduce physiological strain of growing rabbits under Egyptian summer conditions? Animal 2010, 4, 1547–1552. [Google Scholar] [CrossRef] [Green Version]
- El-Hanoun, A.M.; Elkomy, A.E.; Fares, W.A.; Shahien, E.H. Impact of royal jelly to improve reproductive performance of male rabbits under hot summer conditions. World Rabbit Sci. 2014, 22, 241–248. [Google Scholar] [CrossRef]
- Kim, S.T.; Hwang, J.Y.; Sung, M.S.; Je, S.Y.; Bae, D.R.; Han, S.M.; Lee, S.H. The minimum inhibitory concentration (MIC) of bee venom against bacteria isolated from pigs and chickens. Korean J. Vet. Res. 2006, 29, 19–26. [Google Scholar]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Simal-Gandara, J. Bee Venom: An updating review of its bioactive molecules and its health applications. Nutrients 2020, 12, 3360. [Google Scholar] [CrossRef]
- Sumikura, H.; Andersen, O.K.; Drewes, A.M.; Arendt-Nielsen, L. A comparison of hyperalgesia and neurogenic inflammation induced by melittin and capsaicin in humans. Neurosci. Lett. 2003, 337, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.H.; El-Kaiaty, A.M.; Hassan, M.S.; Stino, F.K. Influence of some honey bee products and a growth promoter supplementation on productive and physiological performance of broiler chickens. Egypt. Poult. Sci. J. 2018, 38, 513–531. [Google Scholar]
- El-Hanoun, A.; Elkomy, A.E.; El-Sabrout, K.; Abdella, M. Effect of bee venom on reproductive performance and immune response of male rabbits. Physiol. Behav. 2020, 223, 112987. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, A.; El-Hanoun, A.; Abdella, M.; El-Sabrout, K. Improving the reproductive, immunity and health status of rabbit does using honey bee venom. J. Anim. Physiol. Anim. Nutr. 2021, 105, 975–983. [Google Scholar] [CrossRef]
- Kowalska, D.; Strychalski, J.; Gugołek, A. The effect of silkworm pupae and mealworm larvae meals as dietary protein components on performance indicators in rabbits. Rev. Mex. Cienc. Pecu. 2021, 12, 151–162. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Do insects as feed ingredient affect meat quality? Theory Pract. Meat Process. 2021, 6, 200–209. [Google Scholar] [CrossRef]
- Khalifah, A.; Abdalla, S.; Rageb, M.; Maruccio, L.; Ciani, F.; El-Sabrout, K. Could Insect Products Provide a Safe and Sustainable Feed Alternative for the Poultry Industry? A Comprehensive Review. Animals 2023, 13, 1534. [Google Scholar] [CrossRef]
- Gasco, L.; Dabbou, S.; Trocino, A.; Xiccato, G.; Capucchio, M.T.; Biasato, I.; Dezzutto, D.; Birolo, M.; Meneguz, M.; Schiavone, A.; et al. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Ferrocino, I.; Gasco, L.; Schiavone, A.; Trocino, A.; Xiccato, G.; Barroeta, A.C.; Maione, S.; Soglia, D.; Biasato, I.; et al. Antimicrobial effects of Black Soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits. Animals 2020, 10, 1292. [Google Scholar] [CrossRef] [PubMed]
Nutraceutical Products | Studied Traits | Benefits | References |
---|---|---|---|
Pumpkin (Cucurbita sp.) seed essential oil | Growth, antioxidant status, and immune response | Supplementing growing rabbit diets with pumpkin seed oil up to 2 mL/kg is recommended to improve growth, antioxidative status, and immunological performance, particularly under heat-stress conditions. | [7] |
Rosemary essential oils | Growth, antioxidant status, and immune response | Rosemary essential oils can be used, separately or in combination, in rabbit diets to improve antioxidant status and stability, along with improved kidney function, without significant effects on rabbit growth and immunological performances. | [8,9] |
Pale purple coneflower (Echinacea pallida) | Reproductive performance and hematological parameters | The reproductive and hematological parameters of the does have not been affected by the pale purple coneflower (3 g/kg of diet). | [10] |
Goji berries (Lycium barbarum) | Body weight, reproductive performance, immune response, and meat quality | Goji berries have been shown to improve rabbit reproductive and productive performance, meat quality, and immunity. | [11] |
Fenugreek (Trigonella foenum-gracum) | Productive performance and immune response | Fenugreek administration improves milk yield and quality of rabbit does, as well as bunnies’ body weight and immunological performance. | [12] |
Agro-industrial by-products | Growth performance and carcass quality | The substitution of fenugreek, garden rocket, and mustard seed meals for up to 50% of soybean meal in rabbit diets had positive economical results with no negative effects on growth and carcass. | [13] |
Fenugreek seeds and probiotics | Growth performance and carcass quality | Fenugreek seeds and probiotics (15 g/kg of diet and 450 mg/kg of diet, respectively) supplementation improved rabbit growth performance and nutrient digestibility without affecting carcass quality. | [14] |
Bee pollen and propolis | Reproductive performance and immune response | Bee pollen and propolis, administered separately or in combination to rabbit does at 150 or 300 mg, improve reproductive performance, milk production, and immune response. | [15] |
Milk whey | Growth performance and meat quality | The addition of 2.25% whey powder improved the gut health of growing rabbits and increased their growth performance and thigh muscle quality. | [16] |
Insect lipids | Growth performance and gut health | Black soldier flies and yellow mealworm fats can be used as a lipid source to replace soybean oil in rabbit diets without affecting growth performance, digestive process, and gut health. | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sabrout, K.; Khalifah, A.; Ciani, F. Current Applications and Trends in Rabbit Nutraceuticals. Agriculture 2023, 13, 1424. https://doi.org/10.3390/agriculture13071424
El-Sabrout K, Khalifah A, Ciani F. Current Applications and Trends in Rabbit Nutraceuticals. Agriculture. 2023; 13(7):1424. https://doi.org/10.3390/agriculture13071424
Chicago/Turabian StyleEl-Sabrout, Karim, Ayman Khalifah, and Francesca Ciani. 2023. "Current Applications and Trends in Rabbit Nutraceuticals" Agriculture 13, no. 7: 1424. https://doi.org/10.3390/agriculture13071424
APA StyleEl-Sabrout, K., Khalifah, A., & Ciani, F. (2023). Current Applications and Trends in Rabbit Nutraceuticals. Agriculture, 13(7), 1424. https://doi.org/10.3390/agriculture13071424