Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds Materials
2.2. Growing Conditions
2.3. Statistical Analysis
3. Results
3.1. Germination Duration and Seedling Growth
3.2. Interaction between Salinity and Temperature on Maize Germination
3.3. Comparison of Germination Performance between Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Assumption Tests
Correlations | ||||
---|---|---|---|---|
Radicle Length | Germination % | Plumule Length | ||
Radicle Length | Pearson Correlation | 1 | 0.467 ** | 0.793 ** |
Sig. (2-tailed) | 0.000 | 0.000 | ||
N | 1536 | 1536 | 1536 | |
Germination % | Pearson Correlation | 0.467 ** | 1 | 0.675 ** |
Sig. (2-tailed) | 0.000 | 0.000 | ||
N | 1536 | 1536 | 1536 | |
Plumule Length | Pearson Correlation | 0.793 ** | 0.675 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | ||
N | 1536 | 1536 | 1536 |
References
- Tenaillon, M.I.; Charcosset, A. A European Perspective on Maize History. Comptes Rendus Biol. 2011, 334, 221–228. [Google Scholar] [CrossRef] [PubMed]
- FAO. Crops and Livestock Products Report; FAO: Rome, Italy, 2022. [Google Scholar]
- Measho, S.; Li, F.; Pellikka, P.; Tian, C.; Hirwa, H.; Xu, N.; Qiao, Y.; Khasanov, S.; Kulmatov, R.; Chen, G. Soil Salinity Variations and Associated Implications for Agriculture and Land Resources Development Using Remote Sensing Datasets in Central Asia. Remote Sens. 2022, 14, 2501. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC Summary for Policymakers, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Goodman, M.M.; Galinat, W.C. The History and Evolution of Maize. CRC Crit. Rev. Plant Sci. 1988, 7, 197–220. [Google Scholar] [CrossRef]
- Schubert, S.; Neubert, A.; Schierholt, A.; Sümer, A.; Zörb, C. Development of Salt-Resistant Maize Hybrids: The Combination of Physiological Strategies Using Conventional Breeding Methods. Plant Sci. 2009, 177, 196–202. [Google Scholar] [CrossRef]
- Gilliham, M.; Able, J.A.; Roy, S.J. Translating Knowledge about Abiotic Stress Tolerance to Breeding Programmes. Plant J. 2017, 90, 898–917. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt Stress in Maize: Effects, Resistance Mechanisms, and Management. A Review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Blanco, F.F.; Folegatti, M.V.; Gheyi, H.R.; Fernandes, P.D. Emergence and Growth of Corn and Soybean under Saline Stress. Sci. Agric. 2007, 64, 451–459. [Google Scholar] [CrossRef]
- Kaymakanova, M. Effect of Salinity on Germination and Seed Physiology in Bean (Phaseolus vulgaris L.). Biotechnol. Biotechnol. Equip. 2009, 23, 326–329. [Google Scholar] [CrossRef]
- Khajeh-Hosseini, M.; Powell, A.A.; Bingham, I.J. The Interaction between Salinity Stress and Seed Vigor during Germination of Soybean Seeds. Seed Sci. Technol. 2003, 31, 715–725. [Google Scholar] [CrossRef]
- Atia, A.; Debez, A.; Barhoumi, Z.; Smaoui, A.; Abdelly, C. ABA, GA3, and Nitrate May Control Seed Germination of Crithmum maritimum (Apiaceae) under Saline Conditions. Comptes Rendus Biol. 2009, 332, 704–710. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Boari, F.; Mastro, M.A.; Cantore, V. Effect of Water Salinity and Irrigation Regime on Maize (Zea mays L.) Cultivated on Clay Loam Soil and Irrigated by Furrow in Southern Italy. Agric. Water Manag. 2019, 222, 118–124. [Google Scholar] [CrossRef]
- Niu, G.; Xu, W.; Rodriguez, D.; Sun, Y. Growth and Physiological Responses of Maize and Sorghum Genotypes to Salt Stress. ISRN Agron. 2012, 2012, 145072. [Google Scholar] [CrossRef]
- Hütsch, B.W.; Saqib, M.; Osthushenrich, T.; Schubert, S. Invertase Activity Limits Grain Yield of Maize under Salt Stress. J. Plant Nutr. Soil. Sci. 2014, 177, 278–286. [Google Scholar] [CrossRef]
- Hichem, H.; Mounir, D.; Naceur, E.A. Differential Responses of Two Maize (Zea mays L.) Varieties to Salt Stress: Changes on Polyphenols Composition of Foliage and Oxidative Damages. Ind. Crops Prod. 2009, 30, 144–151. [Google Scholar] [CrossRef]
- Khaeim, H.; Kende, Z.; Jolánkai, M.; Kovács, G.P.; Gyuricza, C.; Tarnawa, Á. Impact of Temperature and Water on Seed Germination and Seedling Growth of Maize (Zea mays L.). Agronomy 2022, 12, 397. [Google Scholar] [CrossRef]
- Khaeim, H.; Kende, Z.; Balla, I.; Gyuricza, C.; Eser, A.; Tarnawa, Á. The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Sustainability 2022, 14, 3887. [Google Scholar] [CrossRef]
- Haj Sghaier, A.; Tarnawa, Á.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef]
- Penfield, S. Temperature Perception and Signal Transduction in Plants. New Phytol. 2008, 179, 615–628. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. Bot. Rev. 2020, 86, 39–75. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed Germination and Vigor: Ensuring Crop Sustainability in a Changing Climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef]
- Upadhaya, A.; Chaturvedi, S.; Tiwari, B.; Paul, D. Effect of Temperature on Germination of Citrus Macroptera, Citrus Latipes and Citrus Indica Seeds. NEHU J. 2020, 17, 12–20. [Google Scholar]
- Heidari, Z.; Kamkar, B.; Sinaki, J.M. Influence of Temperature on Seed Germination Response of Fennel. Adv. Plants Agric. Res. 2014, 1, 207–213. [Google Scholar] [CrossRef]
- Meng, A.; Wen, D.; Zhang, C. Dynamic Changes in Seed Germination under Low-Temperature Stress in Maize. Int. J. Mol. Sci. 2022, 23, 5495. [Google Scholar] [CrossRef]
- Kołodziejczyk, I.; Kaźmierczak, A.; Posmyk, M.M. Melatonin Application Modifies Antioxidant Defense and Induces Endoreplication in Maize Seeds Exposed to Chilling Stress. Int. J. Mol. Sci. 2021, 22, 8628. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, H.O.; Vasconcellos, R.C.C.; de Pauli, B.; Pires, R.M.O.; Pereira, E.M.; Tirelli, G.V.; Pinho, É.V.R.V. Effect of Soil Temperature in the Emergence of Maize Seeds. J. Agric. Sci. 2018, 11, 479–484. [Google Scholar] [CrossRef]
- Deng, B.; Yang, K.; Zhang, Y.; Li, Z. The Effects of Temperature on the Germination Behavior of White, Yellow, Red and Purple Maize Plant Seeds. Acta Physiol. Plant. 2015, 37, 174. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the Growth and Development of Maize and Rice: A Review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Neelambari, A.K.S.; Kumar, S. Effect of Individual and Combined Salinity and High Temperature Stress during Germination Stage of Different Wheat (Triticum aestivum L.) Genotypes. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1723–1730. [Google Scholar] [CrossRef]
- Alshoaibi, A. Interactive Effects of Salinity and Chilling Stress on the Growth of the Two Forage Species Elephant Grass and Maize. Egypt. J. Bot. 2021, 61, 579–590. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef]
- Balfagón, D.; Zandalinas, S.I.; Mittler, R.; Gómez-Cadenas, A. High Temperatures Modify Plant Responses to Abiotic Stress Conditions. Physiol. Plant. 2020, 170, 335–344. [Google Scholar] [CrossRef]
- Balfagón, D.; Zandalinas, S.I.; Gómez-Cadenas, A. High Temperatures Change the Perspective: Integrating Hormonal Responses in Citrus Plants under Co-Occurring Abiotic Stress Conditions. Physiol. Plant. 2019, 165, 183–197. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fichman, Y.; Devireddy, A.R.; Sengupta, S.; Azad, R.K.; Mittler, R. Systemic Signaling during Abiotic Stress Combination in Plants. Proc. Natl. Acad. Sci. USA 2020, 117, 13810–13820. [Google Scholar] [CrossRef]
- Martinez, V.; Nieves-Cordones, M.; Lopez-Delacalle, M.; Rodenas, R.; Mestre, T.; Garcia-Sanchez, F.; Rubio, F.; Nortes, P.; Mittler, R.; Rivero, R. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules 2018, 23, 535. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Aycan, M.; Hanamata, S.; Baslam, M.; Mitsui, T. Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release. Plants 2022, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Al-Shoaibi, A.A. Combined Effects of Salinity and Temperature on Germination, Growth and Gas Exchange in Two Cultivars of Sorghum bicolor. J. Taibah Univ. Sci. 2020, 14, 812–822. [Google Scholar] [CrossRef]
- Hu, X.; Wu, L.; Zhao, F.; Zhang, D.; Li, N.; Zhu, G.; Li, C.; Wang, W. Phosphoproteomic Analysis of the Response of Maize Leaves to Drought, Heat and Their Combination Stress. Front. Plant Sci. 2015, 6, 298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.H.; Sami, A.; Xu, Q.Q.; Wu, L.L.; Zheng, W.Y.; Chen, Z.P.; Jin, X.Z.; Zhang, H.; Li, Y.; Yu, Y.; et al. Effects of Seed Priming Treatments on the Germination and Development of Two Rapeseed (Brassica napus L.) Varieties under the Co-Influence of Low Temperature and Drought. PLoS ONE 2021, 16, e0257236. [Google Scholar] [CrossRef]
- Andrade, J.A.; Mateus, M.; Cadima, J.F.; Abreu, F.G. Seed Loss of Bean and Maize Varieties as a Function of Temperature and Irrigation Levels. IOP Conf. Ser. Earth Environ. Sci. 2020, 594, 012033. [Google Scholar] [CrossRef]
- Bano, S.; Aslam, M.; Saleem, M.; Basra, S.M.A.; Aziz, K. Evaluation of Maize Accessions under Low Temperature Stress at Early Growth Stages. J. Anim. Plant Sci. 2015, 25, 392–400. [Google Scholar]
- Farooq, M.; Aziz, T.; Basra, S.M.A.; Cheema, M.A.; Rehman, H. Chilling Tolerance in Hybrid Maize Induced by Seed Priming with Salicylic Acid. J. Agron. Crop Sci. 2008, 194, 161–168. [Google Scholar] [CrossRef]
- Casali, L.; Rubio, G.; Herrera, J.M. Drought and Temperature Limit Tropical and Temperate Maize Hybrids Differently in a Subtropical Region. Agron. Sustain. Dev. 2018, 38, 49. [Google Scholar] [CrossRef]
- Huqe, M.A.S.; Haque, M.S.; Sagar, A.; Uddin, M.N.; Hossain, M.A.; Hossain, A.Z.; Rahman, M.M.; Wang, X.; Al-Ashkar, I.; Ueda, A.; et al. Characterization of Maize Hybrids (Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage. Plants 2021, 10, 2549. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.S.; Azad, M.A.K.; Hasanuzzaman, M.; Arifuzzaman, M.d. Evaluation of Salt Tolerance in Maize (Zea mays L.) at Seedling Stage through Morphological Characters and Salt Tolerance Index. Plant Physiol. Rep. 2021, 26, 419–427. [Google Scholar] [CrossRef]
- Ahmad Sadat-Noori, S.; Lotfifar, O.; Sadat-Noori, S.; Mottaghi, S. Salinity Tolerance of Maize in Embryo and Adult Stage. J. Agric. Environ. Sci. 2008, 3, 717–725. [Google Scholar]
- Khavari Khorasani, S.; Khazaee, H.; Mohammadi, M. Evaluation of Maize Genotypes (Zea mays L.) for Salt Tolerance. Asian J. Biol. Life Sci. 2017, 6, 405–411. [Google Scholar]
- Malik, J.A.; AlQarawi, A.A.; AlZain, M.N.; Dar, B.A.; Habib, M.M.; Ibrahim, S.N.S. Effect of Salinity and Temperature on the Seed Germination and Seedling Growth of Desert Forage Grass Lasiurus scindicus Henr. Sustainability 2022, 14, 8387. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Hartman, S., Ed.; Pearson: Boston, MA, USA, 2007; Volume 1, ISBN 6178487320. [Google Scholar]
- Richardson, J.T.E. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Chakraborty, M. Biochemical and Molecular Basis of Varietal Difference in Plant Salt Tolerance. Annu. Rev. Res. Biol. 2013, 3, 422–454. [Google Scholar]
- Ahmed, I.M.; Dai, H.; Zheng, W.; Cao, F.; Zhang, G.; Sun, D.; Wu, F. Genotypic Differences in Physiological Characteristics in the Tolerance to Drought and Salinity Combined Stress between Tibetan Wild and Cultivated Barley. Plant Physiol. Biochem. 2013, 63, 49–60. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; De Boeck, H.J.; Hou, F. Effects of Temperature and Salinity on Seed Germination of Three Common Grass Species. Front. Plant Sci. 2021, 12, 731433. [Google Scholar] [CrossRef] [PubMed]
- Sewelam, N.; Oshima, Y.; Mitsuda, N.; Ohme-Takagi, M. A Step towards Understanding Plant Responses to Multiple Environmental Stresses: A Genome-Wide Study. Plant Cell Environ. 2014, 37, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Nadjafi, F.; Shabahang, J.; Mahdavi Damghani, A. Effects of Salinity and Temperature on Germination and Seedling Growth of Nine Medicinal Plants. Planta Med. 2010, 76, 387. [Google Scholar] [CrossRef]
- Song, J.; Feng, G.; Zhang, F. Salinity and Temperature Effects on Germination for Three Salt-Resistant Euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant Soil 2006, 279, 201–207. [Google Scholar] [CrossRef]
- Fonseca de Lima, C.F.; Kleine-Vehn, J.; de Smet, I.; Feraru, E. Getting to the Root of Belowground High Temperature Responses in Plants. J. Exp. Bot. 2021, 72, 7404–7413. [Google Scholar] [CrossRef]
- Gavelienė, V.; Jurkonienė, S.; Jankovska-Bortkevič, E.; Švegždienė, D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. Plants 2022, 11, 192. [Google Scholar] [CrossRef]
- Ribeiro, P.R.; Fernandez, L.G.; de Castro, R.D.; Ligterink, W.; Hilhorst, H.W. Physiological and Biochemical Responses of Ricinus Communis Seedlings to Different Temperatures: A Metabolomics Approach. BMC Plant Biol. 2014, 14, 223. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Acosta-Motos, J.; Ortuño, M.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.; Hernandez, J. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Ahmed, R.; Howlader, M.; Shila, A.; Haque, M. Effect of Salinity on Germination and Early Seedling Growth of Maize. Progress. Agric. 2017, 28, 18–25. [Google Scholar] [CrossRef]
- Mašková, T.; Herben, T. Root:Shoot Ratio in Developing Seedlings: How Seedlings Change Their Allocation in Response to Seed Mass and Ambient Nutrient Supply. Ecol. Evol. 2018, 8, 7143–7150. [Google Scholar] [CrossRef]
- Khatun, M.; Hafiz, M.H.R.; Hasan, M.; Hakim, M.; Siddiqui, M. Responses of Wheat Genotypes to Salt Stress in Relation to Germination and Seedling Growth. Int. J. Bio-Resour. Stress Manag. 2013, 4, 635–640. [Google Scholar]
- Pardales, J.R.; Kono, Y.; Yamauchi, A. Epidermal Cell Elongation in Sorghum Seminal Roots Exposed to High Root-Zone Temperature. Plant Sci. 1992, 81, 143–146. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, V.; Tanwar, H.; Mor, V.S.; Kumar, M.; Punia, R.C.; Dalal, M.S.; Khan, M.; Sangwan, S.; Bhuker, A.; et al. Impact of High Temperature on Germination, Seedling Growth and Enzymatic Activity of Wheat. Agriculture 2022, 12, 1500. [Google Scholar] [CrossRef]
- Mangena, P. Analysis of Correlation between Seed Vigor, Germination and Multiple Shoot Induction in Soybean (Glycine max L. Merr.). Heliyon 2021, 7, e07913. [Google Scholar] [CrossRef]
- Yaghoubian, I.; Msimbira, L.A.; Smith, D.L. Cell-Free Supernatant of Bacillus Strains Can Improve Seed Vigor Index of Corn (Zea mays L.) Under Salinity Stress. Front. Sustain. Food Syst. 2022, 6, 857643. [Google Scholar] [CrossRef]
- Rajabi Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Cardenas Perez, S.; Piernik, A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 2020, 10, 859. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Pandey, A.K.; Singh, A.K.; Singh, R.; Singh, A.; Yadav, R. Effect Salinity on Germination Percentage (%) and Seed Vigor Index of Rice (Oryza sativa L.). J. Pharmacogn. Phytochem. 2020, 9, 1130–1133. [Google Scholar] [CrossRef]
- Buriro, M.; Oad, F.; Keerio, M.; Tunio, S.; Gandahi, A.W.; Waseem, S.; Hassan, U.; Oad, S. Wheat Seed Germination under the Influence of Temperature Regimes. Sarhad J. Agric. 2011, 27, 539–543. [Google Scholar]
- Wang, L.; Hu, W.; Zahoor, R.; Yang, X.; Wang, Y.; Zhou, Z.; Meng, Y. Cool Temperature Caused by Late Planting Affects Seed Vigor via Altering Kernel Biomass and Antioxidant Metabolism in Cotton (Gossypium hirsutum L.). Field Crops Res. 2019, 236, 145–154. [Google Scholar] [CrossRef]
- Mazhar, T.; Ali, Q.; Rashid, M.; Malik, D. Effects of Salt and Drought Stress on Growth Traits of Zea mays Seedlings. Life Sci. J. 2020, 17, 48–54. [Google Scholar] [CrossRef]
- Hajlaoui, H.; El Ayeb, N.; Garrec, J.P.; Denden, M. Differential Effects of Salt Stress on Osmotic Adjustment and Solutes Allocation on the Basis of Root and Leaf Tissue Senescence of Two Silage Maize (Zea mays L.) Varieties. Ind. Crops Prod. 2010, 31, 122–130. [Google Scholar] [CrossRef]
- Khalid, N.; Tarnawa, Á.; Kende, Z.; Kassai, K.M.; Jolánkai, M. Viability of Maize (Zea mays L) Seeds Influenced by Water, Temperature, and Salinity Stress. Acta Hydrol. Slovaca 2021, 22, 113–117. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.D.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Cho, Y.-G. Plant Hormones in Salt Stress Tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Cushman, J.C.; Bohnert, H.J. Genomic Approaches to Plant Stress Tolerance. Curr. Opin. Plant Biol. 2000, 3, 117–124. [Google Scholar] [CrossRef]
- Huberty, C.J.; Petoskey, M.D. Multivariate Analysis of Variance and Covariance. In Handbook of Applied Multivariate Statistics and Mathematical Modeling; Elsevier: Amsterdam, The Netherlands, 2000; pp. 183–208. [Google Scholar]
- Hahs-Vaughn, D.L. Applied Multivariate Statistical Concepts; Routledge: New York, NY, USA, 2016; ISBN 9781315816685. [Google Scholar]
Source | Genotype | Hybrid/Parent | |
---|---|---|---|
Martonvásár | V1 | B1026/17 | Parent |
V2 | TK222/17 | TC hybrid | |
V3 | TK15/DV | Parent | |
V4 | TK1083/18 | Parent | |
V5 | TK623/18 | SC hybrid | |
V6 | MCS901/19 | Parent | |
V7 | TK256/17 | DC hybrid | |
Szeged University | V8 | GK155 | Parent |
V9 | GK131 | Parent | |
V10 | GK 154 x155 | SC hybrid | |
V11 | Szegedi 521 | SC hybrid | |
V12 | GK 154 | Parent | |
V13 | GK 150 | Parent | |
V14 | GK 140 | Parent | |
V15 | GK 144 x150 | SC hybrid | |
Producer | V16 | Margitta | Hybrid |
Pillai’s Trace | Value | F | Hypothesis df | Error df | Sig. * | Partial η2 |
---|---|---|---|---|---|---|
Salinity | 0.382 | 307.947 | 3.000 | 1492.000 | <0.001 | 0.382 |
Temperature | 0.436 | 138.753 | 6.000 | 2986.000 | <0.001 | 0.218 |
Salinity × Temperature | 0.151 | 40.575 | 6.000 | 2986.000 | <0.001 | 0.075 |
Type III Sum of Squares | df | Mean Square | F | Sig. * | Partial η2 | ||
---|---|---|---|---|---|---|---|
Salinity | Germination % | 8568.480 | 1 | 8568.480 | 7.968 | 0.004 | 0.005 |
Radicle length | 5879.823 | 1 | 5879.823 | 745.233 | <0.001 | 0.333 | |
Plumule length | 271.305 | 1 | 271.305 | 212.022 | <0.001 | 0.124 | |
Temperature | Germination % | 70,884.300 | 2 | 35,442.150 | 32.959 | <0.001 | 0.042 |
Radicle length | 3347.884 | 2 | 1673.942 | 212.162 | <0.001 | 0.221 | |
Plumule length | 808.970 | 2 | 404.485 | 316.100 | <0.001 | 0.297 | |
Salinity * Temperature | Germination % | 12,240.479 | 2 | 6120.239 | 5.691 | 0.003 | 0.008 |
Radicle length | 1161.793 | 2 | 580.896 | 73.625 | <0.001 | 0.090 | |
Plumule length | 16.119 | 2 | 8.060 | 6.299 | 0.002 | 0.008 | |
Error | Germination % | 1,606,547.641 | 1494 | 1075.333 | |||
Radicle length | 11,787.522 | 1494 | 7.890 | ||||
Plumule length | 1911.736 | 1494 | 1.280 |
Treatment | Temperature | Mean ± SD | |
---|---|---|---|
Germination % | Control | 15 °C | 47.46 ± 39.7 Ba |
20 °C | 54.29 ± 28.65 Ba | ||
35 °C | 68.52 ± 22.63 Bb | ||
100 mM NaCl | 15 °C | 43.81 ± 39.93 Ba | |
20 °C | 55.86 ± 33.08 Bb | ||
35 °C | 56.25 ± 29.19 Ab | ||
Radicle length | Control | 15 °C | 1.99 ± 2.36 Ba |
20 °C | 7.41 ± 5.21 Bb | ||
35 °C | 6.52 ± 3.21 Bb | ||
100 mM NaCl | 15 °C | 0.44 ± 0.54 Aa | |
20 °C | 1.68 ± 1.87 Ab | ||
35 °C | 1.91 ± 1.39 Ab | ||
Plumule length | Control | 15 °C | 0.59 ± 0.69 Ba |
20 °C | 3.06 ± 2.82 Bb | ||
35 °C | 2.93 ± 1.75 Bb | ||
100 mM NaCl | 15 °C | 0.2 ± 0.31 Aa | |
20 °C | 1.07 ± 1.32 Ab | ||
35 °C | 1.21 ± 0.94 Ab |
Type III Sum of Squares | df | Mean Square | F | Sig. * | Partial η2 | ||
---|---|---|---|---|---|---|---|
Salinity | Root: shoot | 103.041 | 1 | 103.041 | 206.724 | <0.001 | 0.358 |
SVI | 60,624,256.825 | 1 | 60,624,256.825 | 427.145 | <0.001 | 0.535 | |
Temperature | Root: shoot | 76.610 | 2 | 38.305 | 76.849 | <0.001 | 0.293 |
SVI | 46,702,743.493 | 2 | 23,351,371.747 | 164.529 | <0.001 | 0.470 | |
Salinity * × Temperature | Root: shoot | 8.534 | 2 | 4.267 | 8.561 | <0.001 | 0.044 |
SVI | 14,239,692.975 | 2 | 7,119,846.487 | 50.165 | <0.001 | 0.213 | |
Error | Root: shoot | 184.923 | 371 | 0.498 | |||
SVI | 52,655,647.016 | 371 | 141,928.968 |
Value | F | Hypothesis df | Error df | Sig. * | Partial η2 | |
---|---|---|---|---|---|---|
Variety | 0.467 | 72.904 | 6.000 | 1436.000 | <0.001 | 0.233 |
Temperature | 0.272 | 4.785 | 45.000 | 2157.000 | <0.001 | 0.091 |
Temperature × Variety | 0.211 | 1.817 | 90.000 | 2157.000 | <0.001 | 0.070 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. * | Partial η2 | |
---|---|---|---|---|---|---|---|
Variety | Germination % | 31.938 | 15 | 2.129 | 11.301 | <0.001 | 0.191 |
Radicle length | 117.213 | 15 | 7.814 | 7.405 | <0.001 | 0.134 | |
Plumule length | 78.116 | 15 | 5.208 | 5.209 | <0.001 | 0.098 | |
Temperature | Germination % | 6.597 | 2 | 3.298 | 17.507 | <0.001 | 0.046 |
Radicle length | 316.017 | 2 | 158.008 | 149.729 | <0.001 | 0.294 | |
Germination % | 304.026 | 2 | 152.013 | 152.063 | <0.001 | 0.297 | |
Temperature × Variety | Germination % | 17.461 | 30 | 0.582 | 3.089 | <0.001 | 0.114 |
Radicle length | 75.253 | 30 | 2.508 | 2.377 | <0.001 | 0.090 | |
Plumule length | 56.578 | 30 | 1.886 | 1.887 | 0.003 | 0.073 | |
Error | Germination % | 135.459 | 719 | 0.188 | |||
Radicle length | 758.756 | 719 | 1.055 | ||||
Plumule length | 718.764 | 719 | 1.000 |
Germination Percentage | Radicle Length | Plumule Length | |||||||
---|---|---|---|---|---|---|---|---|---|
Var | 15 °C | 20 °C | 35 °C | 15 °C | 20 °C | 35 °C | 15 °C | 20 °C | 35 °C |
1 | 50.00 ± 42.60 Aa | 87.50 ± 17.74 Bfg | 65.63 ± 31.31 Abde | 0.62 ± 0.67 Aa | 2.94 ± 2.08 Bd | 2.55 ± 1.91 Bbcde | 0.28 ± 0.35 Aa | 2.03 ± 1.79 Bc | 1.44 ± 1.22 Bbcd |
2 | 40.63 ± 43.87 Aa | 75.00 ± 40.82 Bdefg | 59.38 ± 29.17 ABbcde | 0.44 ± 0.57 Aa | 2.22 ± 1.92 Babcde | 1.97 ± 1.26 Bbcde | 0.22 ± 0.32 Aa | 1.49 ± 1.68 Babc | 1.10 ± 0.85 Babcd |
3 | 45.83 ± 42.82 Aa | 67.71 ± 31.90 Acdefg | 55.21 ± 23.35 Abde | 0.54 ± 0.60 Aa | 2.40 ± 2.00 Bbcde | 1.21 ± 0.54 Bbcde | 0.24 ± 0.34 Aa | 1.76 ± 1.88 Bbc | 0.86 ± 0.54 Bbcd |
4 | 34.38 ± 37.75 Aa | 48.96 ± 26.85 Abcd | 54.17 ± 20.64 Aabcd | 0.29 ± 0.37 Aa | 0.81 ± 0.48 Babcde | 1.90 ± 1.30 Cbcde | 0.15 ± 0.22 Aa | 0.81 ± 0.97 Babc | 1.45 ± 0.77 Cbcd |
5 | 34.38 ± 36.75 Aa | 48.96 ± 23.94 ABcde | 72.92 ± 13.44 Bbde | 0.29 ± 0.36 Aa | 1.02 ± 1.12 Babcde | 2.56 ± 1.36 Ccde | 0.17 ± 0.27 Aa | 0.64 ± 0.71 Aabc | 1.76 ± 1.13 Bbcd |
6 | 36.46 ± 36.12 Aa | 47.92 ± 23.47 Acde | 47.92 ± 29.74 Aabc | 0.36 ± 0.44 Aa | 1.17 ± 0.94 Babcde | 1.62 ± 1.23 Babcde | 0.11 ± 0.22 Aa | 0.73 ± 0.80 Babc | 1.13 ± 0.95 Babcd |
7 | 35.42 ± 39.85 Aa | 62.50 ± 31.91 Bdefg | 53.12 ± 23.74 ABbd | 0.37 ± 0.58 Aa | 1.86 ± 2.10 Babcde | 1.46 ± 0.63 Bbcd | 0.13 ± 0.22 Aa | 1.08 ± 1.34 Babc | 1.06 ± 0.63 Bbcd |
8 | 40.63 ± 44.71 Aa | 59.38 ± 29.79 Acdef | 61.46 ± 14.55 Abd | 0.40 ± 0.51 Aa | 1.43 ± 1.46 Babcde | 1.85 ± 0.84 Bbcde | 0.13 ± 0.21 Aa | 1.13 ± 1.53 Babc | 1.14 ± 0.68 Bbcd |
9 | 42.71 ± 37.99 Ba | 13.54 ± 16.35 Aa | 30.21 ± 13.90 ABa | 0.49 ± 0.56 Aa | 0.33 ± 0.55 Aa | 1.15 ± 0.89 Aab | 0.22 ± 0.34 Aa | 0.24 ± 0.42 Aa | 0.78 ± 0.62 Aabc |
10 | 54.17 ± 46.55 Aa | 82.29 ± 23.94 Bfg | 58.33 ± 36.00 ABefg | 0.61 ± 0.71 Aa | 3.30 ± 2.83 Bcd | 2.53 ± 2.05 Bde | 0.28 ± 0.39 Aa | 1.52 ± 1.50 Babc | 1.19 ± 1.12 Bbcd |
11 | 29.17 ± 33.05 Aa | 16.67 ± 18.26 Aab | 34.37 ± 32.47 Aac | 0.24 ± 0.40 Aa | 0.54 ± 0.90 Aabe | 1.38 ± 1.59 Aabc | 0.08 ± 0.16 Aa | 0.34 ± 0.68 ABab | 0.86 ± 0.96 Bab |
12 | 48.96 ± 36.24 ABa | 26.04 ± 18.23 Aabc | 64.58 ± 23.47 Bdef | 0.41 ± 0.49 Aa | 0.62 ± 0.47 Aabce | 2.00 ± 0.88 ABcde | 0.23 ± 0.35 Aa | 0.49 ± 0.48 Aabc | 1.54 ± 1.05 Bcd |
13 | 46.87 ± 40.92 ABa | 59.37 ± 27.87 Bcdefg | 28.13 ± 23.35 ABa | 0.47 ± 0.52 Aa | 1.70 ± 1.59 Bbcde | 1.02 ± 1.16 ABa | 0.18 ± 0.26 Aa | 1.02 ± 1.11 Babc | 0.53 ± 0.68 ABa |
14 | 54.17 ± 40.60 Aa | 60.42 ± 27.81 Acdefg | 68.75 ± 36.45 Bfg | 0.60 ± 0.67 Aa | 1.85 ± 1.77 Bbcde | 2.77 ± 1.88 Cde | 0.25 ± 0.35 Aa | 1.11 ± 1.28 Babc | 1.57 ± 1.25 Cd |
15 | 46.87 ± 39.07 Aa | 55.56 ± 26.48 Acdef | 64.58 ± 29.11 Abde | 0.37 ± 0.41 Aa | 1.62 ± 1.79 Bbcde | 1.95 ± 1.19 Bbcd | 0.23 ± 0.34 Aa | 0.97 ± 1.06 Babc | 1.25 ± 0.80 Bbcd |
16 | 60.42 ± 42.55 Aa | 80.21 ± 18.48 ABfg | 80.21 ± 20.38 Bfg | 0.60 ± 0.67 Aa | 2.77 ± 2.47 Bcd | 2.81 ± 1.41 Be | 0.32 ± 0.44 Aa | 1.5 ± 1.50 Bbc | 1.79 ± 1.03 Bd |
Type III Sum of Squares | df | Mean Square | F | Sig. * | Partial η2 | ||
---|---|---|---|---|---|---|---|
Variety | Root: shoot | 9.450 | 15 | 0.630 | 2.841 | <0.001 | 0.237 |
SVI | 5,374,528.096 | 15 | 358,301.873 | 10.170 | <0.001 | 0.527 | |
Temperature | Root: shoot | 13.092 | 2 | 6.546 | 29.515 | <0.001 | 0.301 |
SVI | 4,075,822.817 | 2 | 2,037,911.409 | 57.845 | <0.001 | 0.458 | |
Variety × Temperature | Root: shoot | 12.247 | 30 | 0.408 | 1.841 | 0.010 | 0.287 |
SVI | 4,381,965.942 | 30 | 146,065.531 | 4.146 | <0.001 | 0.476 | |
Error | Root: shoot | 30.384 | 137 | 0.222 | |||
SVI | 4,826,616.448 | 137 | 35,230.777 |
Var. | Root: Shoot | Seeds Vigor Index (SVI) | ||||
---|---|---|---|---|---|---|
15 °C | 20 °C | 35 °C | 15 °C | 20 °C | 35 °C | |
1 | 1.86 ± 0.46 Aa | 1.24 ± 0.10 Aabcd | 1.28 ± 0.24 Aa | 215.97 ± 33.77 Aa | 1029.17 ± 114.48 Bc | 350.07 ± 277.58 Aab |
2 | 1.76 ± 0.26 Aa | 1.26 ± 0.32 Aabcd | 1.84 ± 0.53 Aa | 181.39 ± 91.75 Aa | 895 ± 122.34 Bbc | 302.29 ± 275.58 Aab |
3 | 2.01 ± 0.82 Aa | 1.18 ± 0.22 Aabcd | 1.22 ± 0.44 Aa | 188.61 ± 51.09 Aa | 863.82 ± 298.45 Babc | 302.01 ± 207.52 ABab |
4 | 1.71 ± 0.34 Ba | 0.74 ± 0.35 Aab | 1.04 ± 0.44 ABa | 107.85 ± 46.93 Aa | 231.53 ± 69.31 Aa | 329.24 ± 254.28 Aab |
5 | 1.52 ± 0.61 Aa | 1.48 ± 0.71 Aabcd | 1.19 ± 0.48 Aa | 118.54 ± 34.89 Aa | 259.86 ± 209.74 Aab | 387.08 ± 137.33 Aab |
6 | 2.42 ± 0.95 Aa | 1.37 ± 0.28 Aabcd | 1.37 ± 0.20 Aa | 118.70 ± 39.26 Aa | 258.68 ± 136.23 Aa | 208.54 ± 275.03 Aab |
7 | 2.35 ± 0.58 Aa | 1.68 ± 0.31 Aabcd | 1.37 ± 0.22 Aa | 136.39 ± 104.22 Aa | 714.31 ± 443.59 Aabc | 218.82 ± 106.88 Aa |
8 | 2.64 ± 0.61 Aa | 1.06 ± 0.31 Aabcd | 1.43 ± 0.28 Aa | 169.44 ± 45.10 Aa | 487.08 ± 322.77 Aabc | 290.97 ± 100.12 Aa |
9 | 1.96 ± 0.53 Aa | 1.89 ± 0.83 Aabcd | 0.91 ± 0.37 Aa | 165.56 ± 110.04 Aa | 83.06 ± 43.60 Aa | 84.63 ± 68.35 Aa |
10 | 1.93 ± 0.49 Aa | 2.01 ± 0.33 Acd | 1.70 ± 0.18 Aa | 249.17 ± 62.22 Aa | 1096.11 ± 175.8 Cc | 629.17 ± 44.55 Bb |
11 | 2.76 ± 0.54 Aa | 1.27 ± 0.45 Babcd | 1.73 ± 0.94 ABa | 77.78 ± 84.91 Aa | 119.81 ± 157.19 Aa | 112.04 ± 53.87 Aa |
12 | 1.51 ± 0.23 Aa | 0.96 ± 0.11 Bac | 1.08 ± 0.38 ABa | 154.93 ± 80.42 Aa | 91.11 ± 56.02 Aa | 426.11 ± 136.49 Bb |
13 | 2.33 ± 0.76 Aa | 1.40 ± 0.09 Abd | 2.06 ± 1.12 Aa | 159.79 ± 19.89 Aa | 471.53 ± 349.26 Aabc | 16.18 ± 6.23 Ba |
14 | 1.99 ± 0.33 Aa | 1.39 ± 0.24 Aabcd | 1.43 ± 0.37 Aa | 223.82 ± 68.26 Aa | 585.42 ± 393.14 Aabc | 687.22 ± 249.97 Ab |
15 | 1.28 ± 0.18 Aa | 1.61 ± 0.34 Aabcd | 1.63 ± 0.76 Aa | 148.82 ± 66.31 Aa | 333.26 ± 395 Aabc | 229.93 ± 153.49 Aab |
16 | 1.54 ± 0.27 Aa | 1.65 ± 0.23 Aabcd | 1.52 ± 0.31 Aa | 257.08 ± 57.37 Aa | 1029.24 ± 196.49 Bc | 672.64 ± 203.61 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, N.; Tarnawa, Á.; Balla, I.; Omar, S.; Abd Ghani, R.; Jolánkai, M.; Kende, Z. Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties. Agriculture 2023, 13, 1932. https://doi.org/10.3390/agriculture13101932
Khalid N, Tarnawa Á, Balla I, Omar S, Abd Ghani R, Jolánkai M, Kende Z. Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties. Agriculture. 2023; 13(10):1932. https://doi.org/10.3390/agriculture13101932
Chicago/Turabian StyleKhalid, Noriza, Ákos Tarnawa, István Balla, Suhana Omar, Rosnani Abd Ghani, Márton Jolánkai, and Zoltán Kende. 2023. "Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties" Agriculture 13, no. 10: 1932. https://doi.org/10.3390/agriculture13101932
APA StyleKhalid, N., Tarnawa, Á., Balla, I., Omar, S., Abd Ghani, R., Jolánkai, M., & Kende, Z. (2023). Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties. Agriculture, 13(10), 1932. https://doi.org/10.3390/agriculture13101932