Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiment and Soil Sampling
2.2. 15N Tracing Experiment
2.3. 15N Tracing Model
2.4. Calculations
2.5. Statistical Analyses
3. Results
3.1. Soil N Pool Sizes and 15N Enrichment
3.2. Gross N Transformation Rates
3.3. N2O Production Pathways and Emissions
4. Discussion
4.1. Brachiaria Humidicola Cultivation Enhanced the Soil NH4+ Supply
4.2. Effect of Brachiaria humidicola Cultivation on Soil N2O Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Prather, M.J.; Hsu, J.; DeLuca, N.M.; Jackman, C.H.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Strahan, S.E.; Steenrod, S.D.; Søvde, O.A.; et al. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. 2015, 120, 5693–5705. [Google Scholar] [CrossRef] [PubMed]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- UNEP. Drawing Down N2O to Protect Climate and the Ozone Layer; UNEP: Nairobi, Kenya, 2013; ISBN 9789280733587. [Google Scholar]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2019, 25, 640–659. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across england and wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef]
- Poudel, D.D.; Horwath, W.R.; Lanini, W.T.; Temple, S.R.; Van Bruggen, A.H.C. Comparison of soil n availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern california. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- Wendeborn, S. The chemistry, biology, and modulation of ammonium nitrification in soil. Angew. Chem. Int. Ed. 2019, 58, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.V.; Sahrawat, K.L.; Nakahara, K.; Ishikawa, T.; Kishii, M.; Rao, I.M.; Hash, C.T.; George, T.S.; Srinivasa Rao, P.; Nardi, P.; et al. Biological nitrification inhibition—A novel strategy to regulate nitrification in agricultural systems. Adv. Agron. 2012, 114, 249–302. [Google Scholar]
- Zakir, H.A.K.M.; Subbarao, G.V.; Pearse, S.J.; Gopalakrishnan, S.; Ito, O.; Ishikawa, T.; Kawano, N.; Nakahara, K.; Yoshihashi, T.; Ono, H.; et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol. 2008, 180, 442–451. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Y.F.; Yu, F.W.; Kronzucker, H.J.; Shi, W.M. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 2016, 212, 646–656. [Google Scholar] [CrossRef]
- O’Sullivan, C.A.; Fillery, I.R.P.P.; Roper, M.M.; Richards, R.A.; O’Sullivan, C.A.; Fillery, I.R.P.P.; Roper, M.M.; Richards, R.A. Identification of several wheat landraces with biological nitrification inhibition capacity. Plant Soil 2016, 404, 61–74. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Kishii, M.; Nakahara, K.; Ishikawa, T.; Ban, T.; Tsujimoto, H.; George, T.S.; Berry, W.L.; Hash, C.T.; Ito, O. Biological nitrification inhibition (BNI)—Is there potential for genetic interventions in the triticeae? Breed. Sci. 2009, 59, 529–545. [Google Scholar] [CrossRef][Green Version]
- Otaka, J.; Subbarao, G.V.; Ono, H.; Yoshihashi, T. Biological nitrification inhibition in maize—Isolation and identification of hydrophobic inhibitors from root exudates. Biol. Fertil. Soils 2022, 58, 251–264. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Nakahara, K.; Hurtado, M.P.; Ono, H.; Moreta, D.E.; Salcedo, A.F.; Yoshihashi, A.T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. USA 2009, 106, 17302–17307. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, S.; Carfora, A.; Fiorentino, A.; Natale, A.; Messere, A.; Miglietta, F.; Cotrufo, M.F. Inhibition of net nitrification activity in a mediterranean woodland: Possible role of chemicals produced by arbutus unedo. Plant Soil 2009, 315, 273–283. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Nakahara, K.; Ishikawa, T.; Yoshihashi, T.; Ito, O.; Ono, H.; Ohnishi-Kameyama, M.; Yoshida, M.; Kawano, N.; Berry, W.L. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil 2008, 313, 89–99. [Google Scholar] [CrossRef]
- Karwat, H.; Egenolf, K.; Nunez, J.; Rao, I.; Rasche, F.; Arango, J.; Moreta, D.; Arevalo, A.; Cadisch, G. Low N-15 natural abundance in shoot tissue of Brachiaria humidicola is an indicator of reduced N losses due to biological nitrification inhibition (BNI). Front. Microbiol. 2018, 9, 2383. [Google Scholar] [CrossRef]
- Nunez, J.; Arevalo, A.; Karwat, H.; Egenolf, K.; Miles, J.; Chirinda, N.; Cadisch, G.; Rasche, F.; Rao, I.; Subbarao, G.V.; et al. Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 2018, 426, 401–411. [Google Scholar] [CrossRef]
- Egenolf, K.; Schad, P.; Arevalo, A.; Villegas, D.; Arango, J.; Karwat, H.; Cadisch, G.; Rasche, F. Inter-microbial competition for N and plant NO3− uptake rather than BNI determines soil net nitrification under intensively managed Brachiaria humidicola. Biol. Fertil. Soils 2022, 58, 307–319. [Google Scholar] [CrossRef]
- Vazquez, E.; Teutscherova, N.; Dannenmann, M.; Töchterle, P.; Butterbach-Bahl, K.; Pulleman, M.; Arango, J. Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biol. Biochem. 2020, 151, 108058. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Z.; Zhu, T. N2O production pathways in the subtropical acid forest soils in China. Environ. Res. 2011, 111, 643–649. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.G.; Zaman, M.; Tillman, R.W. Denitrification and N2O: N2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, Z.; Cheng, Y.; Zhu, T. Denitrification and Total Nitrogen Gas Production from Forest Soils of Eastern China. Soil Biol. Biochem. 2009, 41, 2551–2557. [Google Scholar] [CrossRef]
- Müller, C.; Rütting, T.; Kattge, J.; Laughlin, R.J.; Stevens, R.J. Estimation of parameters in complex 15N tracing models by monte carlo sampling. Soil Biol. Biochem. 2007, 39, 715–726. [Google Scholar] [CrossRef]
- Rütting, T.; Müller, C. 15N Tracing models with a monte carlo optimization procedure provide new insights on gross n transformations in soils. Soil Biol. Biochem. 2007, 39, 2351–2361. [Google Scholar] [CrossRef]
- Knorr, W.; Kattge, J. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by monte carlo sampling. Glob. Chang. Biol. 2005, 11, 1333–1351. [Google Scholar] [CrossRef]
- Müller, C.; Stevens, R.J.; Laughlin, R.J. A 15N tracing model to analyse n transformations in old grassland soil. Soil Biol. Biochem. 2004, 36, 619–632. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, J.; Cai, Z. The Contribution of Nitrogen Transformation Processes to Total N2O Emissions from Soils Used for Intensive Vegetable Cultivation. Plant Soil 2011, 343, 313–327. [Google Scholar] [CrossRef]
- Teutscherová, N.; Vazquez, E.; Arevalo, A.; Pulleman, M.; Rao, I.; Arango, J. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical brachiaria grasses: Is there a relation with BNI activity? Biol. Fertil. Soils 2019, 55, 325–337. [Google Scholar] [CrossRef]
- Teutscherová, N.; Vazquez, E.; Lehndorff, E.; Pulleman, M.; Arango, J. Nitrogen acquisition by two U. humidicola genotypes differing in biological nitrification inhibition (BNI) capacity and associated microorganisms. Biol. Fertil. Soils 2022, 58, 355–364. [Google Scholar] [CrossRef]
- Lama, S.; Kuhn, T.; Lehmann, M.F.; Müller, C.; Gonzalez, O.; Eisenhauer, N.; Lange, M.; Scheu, S.; Oelmann, Y.; Wilcke, W. The biodiversity—N cycle relationship: A 15N tracer experiment with soil from plant mixtures of varying diversity to model N pool sizes and transformation rates. Biol. Fertil. Soils 2020, 56, 1047–1061. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Cai, Z.; Müller, C. Nitrogen cycling in forest soils across climate gradients in eastern China. Plant Soil 2011, 342, 419–432. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, W.; Yu, H.; He, X. Carbon uptake by a microbial community during 30-day treatment with 13C-glucose of a sandy loam soil fertilized for 20 years with npk or compost as determined by a GC-C-IRMS analysis of phospholipid fatty acids. Soil Biol. Biochem. 2013, 57, 228–236. [Google Scholar] [CrossRef]
- Lin, Y.X.; Ye, G.P.; Kuzyakov, Y.; Liu, D.Y.; Fan, J.B.; Ding, W.X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Zhang, H.J.; Ding, W.X.; Yu, H.Y.; He, X.H. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fertil. Soils 2015, 51, 137–150. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Geng, R.L.; Cai, Z.C. Long-term application of compost and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Till. Res. 2012, 124, 170–177. [Google Scholar] [CrossRef]
- Xu, G.; Chen, J.; Berninger, F.; Pumpanen, J.; Bai, J.; Yu, L.; Duan, B. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 2015, 91, 1–13. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Horrocks, C.A.; Arango, J.; Arevalo, A.; Nuñez, J.; Cardoso, J.A.; Dungait, J.A.J. Smart forage selection could significantly improve soil health in the tropics. Sci. Total Environ. 2019, 688, 609–621. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Nùñez, J.; Arenas, L.; Rao, I.; Trujillo, C.; Alvarez, C.; Arango, J.; Rasche, F.; Chirinda, N. Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol. Biochem. 2017, 107, 156–163. [Google Scholar] [CrossRef]
- Teutscherová, N.; Vázquez, E.; Trubač, J.; Villegas, D.M.; Subbarao, G.V.; Pulleman, M.; Arango, J. Gross N transformation rates in soil system with contrasting Urochloa genotypes do not confirm the relevance of bni as previously assessed in vitro. Biol. Fertil. Soils 2022, 58, 321–331. [Google Scholar] [CrossRef]
- Garcia, R.A.; Crusciol, C.A.C.; Calonego, J.C.; Rosolem, C.A. Potassium cycling in a corn-brachiaria cropping system. Eur. J. Agron. 2008, 28, 579–585. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Zhao, Q.; Ning, Z.; Zhou, C.; Wang, H.; Lu, L.; Yang, P.; Zhang, K.; Wang, F.; et al. Adsorption and desorption characteristics of ammonium in eight loams irrigated with reclaimed wastewater from intensive hogpen. Environ. Earth Sci. 2013, 69, 41–49. [Google Scholar] [CrossRef]
- Rich, C.I.; Black, W.R. Pottasium exchange as affected by cation size, pH, and mineral structure. Soil Sci. 1964, 97, 384–390. [Google Scholar] [CrossRef]
- Zhu, T.; Meng, T.; Zhang, J.; Yin, Y.; Cai, Z.; Yang, W.; Zhong, W. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol. Fertil. Soils 2013, 49, 323–331. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, L.; Zhu, T.; Yang, H.; Zhang, J.; Yang, J.; Cao, J.; Bai, B.; Jiang, Z.; Liang, Y. Rapid recovery of nitrogen retention capacity in a subtropical acidic soil following afforestation. Soil Biol. Biochem. 2018, 120, 171–180. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. CRC. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ishikawa, T.; Ito, O.; Nakahara, K.; Wang, H.Y.; Berry, W.L. A bioluminescence assay to detect nitrification inhibitors released from plant roots: A case study with Brachiaria humidicola. Plant Soil 2006, 288, 101–112. [Google Scholar] [CrossRef]
- Subbarao, G.V.V.; Sahrawat, K.L.; Nakahara, K.; Rao, I.M.; Ishitani, M.; Hash, C.T.; Kishii, M.; Bonnett, D.G.; Berry, W.L.; Lata, J.C. A paradigm shift towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI). Ann. Bot. 2013, 112, 297–316. [Google Scholar] [CrossRef]
- Karwat, H.; Moreta, D.; Arango, J.; Nunez, J.; Rao, I.; Rincon, A.; Rasche, F.; Cadisch, G. Residual effect of BNI by Brachiaria Humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil 2017, 420, 389–406. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef]
- Portier, E.; Silver, W.L.; Yang, W.H. Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. Ecology 2019, 100, e02716. [Google Scholar] [CrossRef] [PubMed]
- Nardi, P.; Müller, C.; Pietramellara, G.; Subbarao, G.V.; Nannipieri, P. Recommendations about soil biological nitrification inhibition (BNI) studies. Biol. Fertil. Soils 2022, 58, 613–615. [Google Scholar] [CrossRef]
- Nardi, P.; Laanbroek, H.J.; Nicol, G.W.; Renella, G.; Cardinale, M.; Pietramellara, G.; Weckwerth, W.; Trinchera, A.; Ghatak, A.; Nannipieri, P. Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol. Rev. 2020, 44, 874–908. [Google Scholar] [CrossRef]
- Braker, G.; Conrad, R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? Adv. Appl. Microbiol. 2011, 75, 33–70. [Google Scholar]
- Zhang, J.; Müller, C.; Cai, Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol. Biochem. 2015, 84, 199–209. [Google Scholar] [CrossRef]
- Anderson, I.C.; Poth, M.; Homstead, J.; Burdige, D. A Comparison of NO and N2O production by the autotrophic nitrifier nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 1993, 59, 3525–3533. [Google Scholar] [CrossRef]
- De Boer, W.; Kowalchuk, G.A. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol. Biochem. 2001, 33, 853–866. [Google Scholar] [CrossRef]
- Luo, J.; Tillman, R.W.; Ball, P.R. Factors regulating denitrification in a soil under pasture. Soil Biol. Biochem. 1999, 31, 913–927. [Google Scholar] [CrossRef]
- Garcia-Montiel, D.C.; Melilo, J.M.; Steudler, P.A.; Cerri, C.C.; Piccolo, M.C. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. Biol. Fertil. Soils 2003, 38, 267–272. [Google Scholar] [CrossRef]
- Bollmann, A.; Conrad, R. Influence of O2 Availability on NO and N2O release by nitrification and denitrification in soils. Glob. Chang. Biol. 2004, 4, 387–396. [Google Scholar] [CrossRef]
- Groenigen, J.W.; Kasper, G.J.; Velthof, G.L.; Dasselaar van den Pol-van, A.; Kuikman, P.J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry application. Plant Soil 2004, 263, 101–111. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Pelster, D.E.; Perron, M.H.; Rochette, P.; Angers, D.A.; Parent, L.E.; Massé, D.; Ziadi, N. Nitrous oxide emissions from clayey soils amended with paper sludges and biosolids of separated pig slurry. J. Environ. Qual. 2013, 42, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.J.; Ju, X.T.; Ingwersen, J.; Schwarz, U.; Stange, C.F.; Zhang, F.S.; Streck, T. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil. Soil Sci. Soc. Am. J. 2009, 73, 102–112. [Google Scholar] [CrossRef]
pH | TN (g N kg−1) | SOC (g C kg−1) | NH4+-N (mg N kg−1) | NO3−-N (mg N kg−1) | DOC (mg C kg−1) | Available K+ (mg K kg−1) | |
---|---|---|---|---|---|---|---|
Brachiaria soil | 6.40 ± 0.30 a | 0.55 ± 0.02 a | 7.32 ± 0.10 a | 4.24 ± 0.11 a | 6.57 ± 0.10 a | 29.79 ± 0.90 a | 153.13 ± 10.67 a |
Eremochloa soil | 6.10 ± 0.1 a | 0.54 ± 0.01 a | 7.01 ± 0.09 b | 4.38 ± 0.13 a | 3.70 ± 0.11 b | 22.64 ± 1.01 b | 44.28 ± 1.18 b |
Parameter | Description | Kinetics | Gross N Transformation Rates | |
---|---|---|---|---|
Brachiaria Soil | Eremochloa Soil | |||
MNrec | Mineralization of Nrec to NH4+ | 0 | 2.02 ± 0.05 a | 1.57 ± 0.03 b |
INH4-Nrec | Immobilization of NH4+ to Nrec | 1 | 2.94 ± 0.06 b | 3.52 ± 0.07 a |
MNlab | Mineralization of Nlab to NH4+ | 1 | 0 ± 0 | 0 ± 0 |
INH4-Nlab | Immobilization of NH4+ to Nlab | 1 | 0 ± 0 | 0 ± 0 |
ONrec | Oxidation of Nrec to NO3− | 0 | 0.002 ± 0.001 b | 0.006 ± 0.007 a |
INO3 | Immobilization of NO3− to Nrec | 1 | 0.20 ± 0.03 b | 0.88 ± 0.01 a |
ONH4 | Oxidation of NH4+ to NO3− | 1 | 1.44 ± 0.02 b | 1.98 ± 0.04 a |
DNO3 | Dissimilatory NO3− reduction to NH4+ | 1 | 0.0005 ± 0.0002 b | 0.0011 ± 0.0007 a |
ANH4 | Adsorption of NH4+ | 1 | 0.07 ± 0.06 b | 35.43 ± 4.65 a |
RNH4 | Release of adsorbed NH4+ | 1 | 0.71 ± 0.10 b | 35.76 ± 3.36 a |
ANO3 | Adsorption of NO3− | 1 | 0 ± 0 | 0 ± 0 |
RNO3 | Release of adsorbed NO3− | 1 | 0 ± 0 | 0 ± 0 |
N2O Production Rate (μg N2O-N kg−1 d−1) | Relative Contribution to N2O (%) | ||||||
---|---|---|---|---|---|---|---|
Total | Autotrophic Nitrification | Heterotrophic Nitrification | Denitrification | fAN | fHN | fDN | |
Brachiaria soil | 9.02 ± 0.05 a | 2.78 ± 0.1 b | 1.99 ± 0.10 a | 4.25 ± 0.14 a | 30.90 ± 0.60 b | 22.00 ± 1.40 b | 47.10 ± 1.20 a |
Eremochloa soil | 5.65 ± 0.22 b | 3.19 ± 0.28 a | 1.91 ± 0.11 a | 0.55 ± 0.06 b | 56.30 ± 2.80 a | 33.90 ± 3.20 a | 9.70 ± 0.80 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Liu, D.; Müller, C.; Jansen-Willems, A.; Chen, Z.; Niu, Y.; Zaman, M.; Meng, L.; Ding, W. Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study. Agriculture 2022, 12, 1940. https://doi.org/10.3390/agriculture12111940
Xie L, Liu D, Müller C, Jansen-Willems A, Chen Z, Niu Y, Zaman M, Meng L, Ding W. Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study. Agriculture. 2022; 12(11):1940. https://doi.org/10.3390/agriculture12111940
Chicago/Turabian StyleXie, Lu, Deyan Liu, Christoph Müller, Anne Jansen-Willems, Zengming Chen, Yuhui Niu, Mohammad Zaman, Lei Meng, and Weixin Ding. 2022. "Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study" Agriculture 12, no. 11: 1940. https://doi.org/10.3390/agriculture12111940
APA StyleXie, L., Liu, D., Müller, C., Jansen-Willems, A., Chen, Z., Niu, Y., Zaman, M., Meng, L., & Ding, W. (2022). Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study. Agriculture, 12(11), 1940. https://doi.org/10.3390/agriculture12111940