Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Socioeconomic Profile of the Study Area
2.2. Research Design
Conceptual Framework
2.3. Study Population and Sampling Procedure
- Sample size for uMhlathuze – n = (1440/2160) * 327 = 218
- Sample size for Mthonjaneni – n = (720/2160) * 327 = 109
2.4. Data Collection
2.5. Data Analysis
3. Results
3.1. Farmers’ Perception of Social Compatibility of Climate-Smart Agricultural Practices
3.2. Farmers’ Perception of Technical Compatibility of Climate-Smart Agricultural Practices
3.3. Farmers’ Perception of Economic Compatibility of Climate-Smart Agricultural Practices
3.4. Farmers’ Perception of Environmental Compatibility of Climate-Smart Agricultural Practices
3.5. Farmers’ Perception of Compatibility of Climate-Smart Agricultural Practices Across Domains
4. Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organization of the United Nations, Department NRMaE: Rome, Italy, 2013. [Google Scholar]
- Pereira, L. Climate change impacts on agriculture across Africa. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Mwongera, C.; Shikuku, K.M.; Twyman, J.; Läderach, P.; Ampaire, E.; Van Asten, P.; Twomlow, S.; Winowiecki, L.A. Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agric. Syst. 2017, 151, 192–203. [Google Scholar] [CrossRef]
- Neufeldt, H.; Negra, C.; Hancock, J.; Foster, K.; Nayak, D.; Singh, P. Scaling up Climate-Smart Agriculture: Lessons Learned from South Asia and Pathways for Success. In ICRAF Working Paper No. 209; World Agroforestry Centre: Nairobi, Kenya, 2015. [Google Scholar]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; Van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Loevinsohn, M.; James, S.; Aliou, D.; Stephen, W. Under What Circumstances and Conditions Does Adoption of Technology Result in Increased Agricultural Productivity?. In A Systematic Review for the Department for International Development; Institute of Development Studies: Brighton, UK, 2013. [Google Scholar]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. [Google Scholar]
- Mignouna, B.; Manyong, M.; Rusike, J.; Mutabazi, S.; Senkondo, M. Determinants of Adopting Imazapyr-Resistant Maize Technology and its Impact on Household Income in Western Kenya. Agrobiotechnol. Manag. Econ. 2011, 14, 158–163. [Google Scholar]
- Khatri-Chhetri, A.; Aggarwal, P.K.; Joshi, P.; Vyas, S. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Kumar, V.; Saharawat, Y.S.; Kumar, V.; Sharma, P.K.; Sharma, S.; Pathak, H. Tillage and crop establishment affects sustainability of South Asian rice–wheat system. Agron. J. 2011, 103, 961–971. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumar, A.; Bishnoi, D.K.; McDonald, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Aryal, J.P.; Sapkota, T.B.; Khurana, R. Economic benefits of climate-smart agricultural practices to smallholder farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [Google Scholar]
- Lipper, L.; Zilberman, D. A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Palanisami, K.; Suresh Kumar, D.; Malik, R.P.S.; Raman, S.; Kar, G.; Mohan, K. 2015. Managing water management research analysis of four decades of research and outreach programmes in India. Econ. Political Wkly. 2015, 50, 33–43. [Google Scholar]
- Statistics South Africa. Provincial Profile: Kwazulu-Natal. In Census 2011 Provincial Profile; Lehohla, P., Ed.; Statistics South Africa: Pretoria, South Africa, 2014. [Google Scholar]
- Lehohla, P. Community Survey 2016, Agricultural Households; Statistics South Africa: Pretoria, South Africa, 2016. [Google Scholar]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, And Mixed Methods Approaches; Sage publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Akhtar, D.M.I. Research Design. Available online: https://ssrn.com/abstract=2862445 (accessed on 23 July 2018).
- Kinyangi, A.A. Factors Influencing the Adoption of Agricultural Technology Among Smallholder Farmers in Kakamega North Sub-County, Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2014. [Google Scholar]
- Akrofi-Atitianti, F.; Speranza, C.I.; Bockel, L.; Asare, R. Assessing Climate Smart Agriculture and Its Determinants of Practice in Ghana: A Case of the Cocoa Production System. Land 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Determinants of the Adoption of Climate-Smart Agricultural Practices by Small-Scale Farming Households in King Cetshwayo District Municipality, South Africa. Sustainability 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- FAO. Defining Small Scale Food Producers to Monitor Target 2.3. of the 2030 Agenda for Sustainable Development; Food and Agriculture Organization of the United Nations, FAO Statistics Division: Rome, Italy, 2017. [Google Scholar]
- Hoyle, R.; Harris, J.; Judd, C. Research Methods in Social Relations; Thomsom Learning: London, UK, 2002. [Google Scholar]
- Moore, C.G.; Carter, R.E.; Nietert, P.J.; Stewart, P.W. Recommendations for planning pilot studies in clinical and translational research. Clin. Trans. Sci. 2011, 4, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Connelly, L.M. Pilot studies. Medsurg Nurs. 2008, 17, 411. [Google Scholar] [PubMed]
- Umunna, M.; Fabusoro, E.; Adeeko, A. Climate change adaptation strategies among Fulani cattle reares in Borgu Local Government Area of Niger State. In Proceedings of the Annual Conference of Farm Management Association of Nigeria (FAMAN), Ilorin, Nigeria, 26–30 August 2013; pp. 68–72. [Google Scholar]
- Mohammed, N.; Wolfgang, B.; Jason, S. Factors affecting Farmers’ Adaptation Strategies to Environmental Degradation and Climate Change Effects: A farm Level Study in Bangladesh. Climate 2014, 2, 223–241. [Google Scholar]
- Ojoko, E.A.; Akinwunmi, J.A.; Yusuf, S.A.; Oni, O.A. Factors influencing the level of use of Climate-Smart Agricultural Practices (CSAPs) in Sokoto state, Nigeria. J. Agric. Sci. 2017, 62, 315–327. [Google Scholar]
- Onyeneke, R.U.; Igberi, C.O.; Uwadoka, C.O.; Aligbe, J.O. Status of climate-smart agriculture in southeast Nigeria. GeoJournal 2018, 83, 333–346. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Maharjan, S.; Erenstein, O. Factors affecting the adoption of multiple climate-smart agricultural practices in the Indo-Gangetic Plains of India. Nat. Res. Forum 2018, 42, 141–158. [Google Scholar] [CrossRef]
- Akudugu, M.; Guo, E.; Dadzie, S. Adoption of Modern Agricultural Production Technologies by Farm Households in Ghana: What Factors Influence their Decisions? J. Biol. Agric. Healthc. 2012, 2, 1–13. [Google Scholar]
- Strachan, B.D. The Design, Implementation and Assessing of an Agroecological Cropping System by Rural Kwazulu-Natal Households: Its Effect on Their Diet and Food Security. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Murray, U.; Gebremedhin, Z.; Brychkova, G.; Spillane, C. Smallholder farmers and climate smart agriculture: Technology and labor-productivity constraints amongst women smallholders in Malawi. Gender Technol. Dev. 2016, 20, 117–148. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N. Farm household typology and adoption of climate-smart agriculture practices in smallholder farming systems of southern Africa. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 421–439. [Google Scholar] [CrossRef]
- Senyolo, M.P.; Long, T.B.; Blok, V.; Omta, O. How the characteristics of innovations impact their adoption: An exploration of climate-smart agricultural innovations in South Africa. J. Clean. Prod. 2018, 172, 3825–3840. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Vera, T.S.; Wiliams, C.E.; Justin, C.O. Understanding the factors affecting adoption of subpackages of CSA in Southern Malawi. Int. J. Agric. Econ. Ext. 2017, 5, 259–265. [Google Scholar]
Climate-Smart Agricultural Practice | Level of Social Acceptance | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mthonjaneni | uMhlathuze | Combined Analysis | |||||||||||||
A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | |
Planting of Cover Crops | 84 (77.1) | 25 (22.9) | 0 (0.0) | 193 | High | 163 (74.7) | 55 (25.2) | 0 (0.0) | 381 | High | 247 (75.5) | 80 (24.5) | 0 (0.0) | 574 | High |
Agroforestry | 85 (78.0) | 18 (16.6) | 6 (5.5) | 190 | High | 171 (78.5) | 29 (13.3) | 18 (8.3) | 371 | High | 256 (78.3) | 47 (14.4) | 24 (7.3) | 559 | High |
Crop Rotation | 80 (73.4) | 29 (26.6) | 0 (0.0) | 189 | Medium | 141 (64.7) | 61 (28.0) | 16 (7.3) | 343 | Medium | 221 (67.6) | 90 (27.5) | 16 (4.9) | 532 | Medium |
Mulching | 87 (79.8) | 15 (13.8) | 7 (6.4) | 189 | Medium | 153 (70.2) | 48 (22.0) | (17 (7.8) | 354 | Medium | 240 (73.4) | 63 (19.3) | 24 (7.3) | 543 | Medium |
Use of Organic Manure | 81 (74.3) | 26 (23.9) | 2 (1.8) | 188 | Medium | 134 (61.4) | 66 (30.3) | 18 (8.3) | 334 | Medium | 215 (65.8) | 92 (28.1) | 20 (6.1) | 522 | Medium |
Efficient Manure Management | 78 (71.5) | 31 (28.4) | 0 (0.0) | 187 | Medium | 141 (64.7) | 61 (28.0) | 16 (7.3) | 343 | Medium | 219 (67.0) | 92 (28.1) | 16 (4.9) | 530 | Medium |
Integrated Crop-Livestock Management | 77 (70.6) | 31 (28.4) | 1 (0.9) | 185 | Medium | 148 (67.9) | 43 (19.7) | 27 (12.4) | 339 | Medium | 225 (68.8) | 74 (22.6) | 28 (8.6) | 524 | Medium |
Crop Diversification | 79 (72.5) | 25 (22.9) | 5 (4.6) | 183 | Medium | 137 (62.8) | 53 (24.3) | 28 (12.8) | 327 | Medium | 216 (66.1) | 78 (23.9) | 33 (10.1) | 510 | Medium |
Planting of Drought- and heat-tolerant Crops | 75 (68.8) | 31 (28.4) | 3 (2.8) | 181 | Medium | 128 (58.7) | 58 (26.6) | 32 (14.7) | 314 | Low | 203 (62.1) | 89 (27.2) | 35 (10.7) | 495 | Low |
Conservation Agriculture | 77 (70.6) | 23 (21.1) | 9 (8.3) | 177 | Medium | 135 (61.9) | 50 (22.9) | 33 (15.1) | 320 | Low | 212 (64.8) | 73 (22.3) | 42 (12.8) | 497 | Low |
Diet Improvement for Animals | 78 (71.5) | 20 (18.3) | 11 (10.1) | 176 | Medium | 162 (74.3) | 54 (24.8) | 2 (0.9) | 378 | High | 240 (73.4) | 74 (22.6) | 13 (4.0) | 554 | High |
Improved Grazing | 75 (68.8) | 25 (22.9) | 9 (8.3) | 175 | Medium | 140 (64.2) | 67 (30.7) | 11 (5.0) | 347 | Medium | 215 (65.8) | 92 (28.1) | 20 (6.1) | 522 | Medium |
Use of Wetlands | 76 (69.7) | 21 (19.3) | 12 (11.0) | 173 | Low | 136 (62.4) | 46 (21.2) | 36 (16.5) | 318 | Low | 212 (64.8) | 67 (20.5) | 48 (14.7) | 491 | Low |
Soil Conservation | 74 (67.9) | 20 (18.3) | 15 (13.8) | 168 | Low | 147 (67.4) | 38 (17.4) | 33 (15.1) | 332 | Medium | 221 (67.6) | 58 (17.7) | 48 (14.7) | 500 | Low |
Climate-Smart Agricultural Practice | Level of Acceptance based on Technicality | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mthonjaneni | uMhlathuze | Combined Analysis | |||||||||||||
A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | |
Use of Organic Manure | 85 (75.2) | 9 (8.3) | 15 (13.8) | 179 | High | 168 (77.1) | 30 (13.8) | 20 (9.2) | 366 | High | 253 (77.4) | 39 (11.9) | 35 (10.7) | 545 | High |
Crop Rotation | 82 (75.2) | 15 (13.8) | 12 (11.0) | 179 | High | 155 (71.1) | 40 (18.4) | 23 (10.6) | 350 | High | 237 (72.5) | 55 (16.8) | 35 (10.7) | 529 | High |
Crop Diversification | 76 (69.7) | 23 (21.1) | 10 (9.2) | 175 | High | 141 (64.7) | 49 (22.5) | 28 (12.8) | 331 | Medium | 217 (66.4) | 72 (22.0) | 38 (11.6) | 506 | Medium |
Mulching | 83 (76.2) | 8 (7.3) | 18 (16.5) | 174 | High | 158 (72.5) | 35 (16.1) | 25 (11.5) | 351 | High | 241 (73.7) | 43 (13.2) | 43 (13.2) | 525 | High |
Planting of Cover Crops | 80 (73.4) | 9 (8.3) | 20 (18.4) | 169 | Medium | 172 (78.9) | 20 (9.2) | 26 (11.9) | 364 | High | 252 (77.1) | 29 (8.9) | 46 (14.1) | 533 | High |
Use of Wetlands | 70 (64.2) | 17 (15.6) | 22 (20.2) | 157 | Medium | 132 (60.6) | 46 (21.1) | 40 (18.4) | 310 | Medium | 202 (61.8) | 63 (19.3) | 62 (19.0) | 467 | Medium |
Integrated Crop-Livestock Management | 73 (67.0) | 11 (10.1) | 25 (22.9) | 157 | Medium | 150 (68.8) | 23 (10.6) | 45 (20.6) | 323 | Medium | 223 (68.2) | 34 (10.4) | 70 (21.4) | 480 | Medium |
Improved Grazing | 77 (70.6) | 2 (1.8) | 30 (27.5) | 156 | Medium | 146 (67.0) | 39 (17.9) | 33 (15.1) | 331 | Medium | 223 (68.2) | 41 (12.6) | 63 (19.3) | 487 | Medium |
Planting of Drought- and Heat-Tolerant Crops | 68 (62.4) | 6 (5.5) | 35 (32.1) | 142 | Medium | 130 (59.6) | 32 (14.7) | 56 (25.7) | 292 | Low | 198 (60.6) | 38 (11.6) | 91 (27.8) | 434 | Low |
Efficient Manure Management | 67 (61.5) | 6 (5.5) | 36 (33.0) | 140 | Medium | 141 (64.7) | 42 (19.3) | 35 (16.1) | 324 | Medium | 208 (63.6) | 48 (14.7) | 71 (21.7) | 464 | Medium |
Conservation Agriculture | 60 (55.1) | 19 (17.4) | 30 (27.5) | 139 | Low | 120 (55.1) | 53 (24.3) | 45 (20.6) | 293 | Low | 180 (55.1) | 72 (22.0) | 75 (23.0) | 432 | Low |
Agroforestry | 65 (59.6) | 9 (8.3) | 35 (32.1) | 139 | Low | 133 (61.0) | 25 (11.5) | 60 (27.5) | 291 | Low | 198 (60.6) | 34 (10.4) | 95 (29.1) | 430 | Low |
Soil Conservation | 67 (61.5) | 5 (4.6) | 37 (33.9) | 139 | Low | 129 (59.2) | 26 (11.9) | 63 (28.9) | 284 | Low | 196 (59.9) | 31 (9.5) | 100(30.6) | 423 | Low |
Diet Improvement for Animals | 65 (59.6) | 6 (5.5) | 38 (34.9) | 136 | Low | 138 (63.3) | 31 (14.2) | 49 (22.5) | 307 | Medium | 203 (62.1) | 37 (11.3) | 87 (26.6) | 443 | Medium |
Climate-Smart Agricultural Practice | Level of Acceptance based on Economics of Use | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mthonjaneni | uMhlathuze | Combined Analysis | |||||||||||||
A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | |
Crop Rotation | 83 (76.2) | 14 (12.8) | 12 (11.0) | 180 | High | 151 (69.3) | 34 (15.6) | 33 (15.1) | 336 | Medium | 234 (71.6) | 47 (14.4) | 45 (13.8) | 515 | High |
Mulching | 80 (73.4) | 18 (16.5) | 11 (10.1) | 178 | High | 168 (77.1) | 23 (10.6) | 27 (12.4) | 359 | High | 248 (75.8) | 45 (13.8) | 38 (11.6) | 541 | High |
Use of Organic Manure | 75 (68.8) | 16 (14.7) | 18 (16.5) | 166 | Medium | 173 (79.4) | 15 (6.9) | 30 (13.8) | 361 | High | 248 (75.8) | 46 (14.1) | 48 (14.7) | 542 | High |
Improved Grazing | 77 (70.6) | 12 (11.0) | 20 (18.4) | 166 | Medium | 144 (66.1) | 36 (16.5) | 38 (17.4) | 324 | Medium | 221 (67.6) | 50 (15.3) | 58 (17.7) | 492 | Medium |
Crop Diversification | 72 (66.1) | 17 (15.6) | 20 (18.4) | 161 | Medium | 134 (61.5) | 48 (22.0) | 36 (16.5) | 316 | Medium | 206 (63.0) | 53 (16.2) | 56 (17.1) | 465 | Medium |
Conservation Agriculture | 70 (64.2) | 14 (12.8) | 25 (22. 9) | 154 | Medium | 130 (59.6) | 18 (8.3) | 70 (32.1) | 278 | Medium | 200 (61.2) | 84 (25.7) | 95 (29.1) | 484 | Medium |
Planting of Cover Crops | 68 (62.4) | 16 (14.7) | 25 (22.9) | 152 | Medium | 156 (71.6) | 39 (17.9) | 23 (10.6) | 351 | High | 224 (68.5) | 39 (11.9) | 48 (14.7) | 487 | Medium |
Agroforestry | 60 (55.1) | 27 (24.8) | 22 (20.2) | 147 | Medium | 102 (46.8) | 31 (14.2) | 85 (39.0) | 235 | Low | 162 (49.5) | 112 (34.3) | 107 (32.7) | 436 | Low |
Integrated Crop-Livestock Management | 65 (59.6) | 17 (15.6) | 27 (24.8) | 147 | Medium | 146 (67.0) | 24 (11.0) | 48 (22.0) | 316 | Medium | 211 (64.5) | 65 (19.9) | 75 (22.9) | 487 | Medium |
Efficient Manure Management | 65 (59.6) | 16 (14.7) | 28 (25.7) | 146 | Medium | 138 (63.3) | 47 (21.6) | 33 (15.1) | 323 | Medium | 203 (62.1) | 49 (15.0) | 61 (18.7) | 455 | Medium |
Use of Wetlands | 65 (59.6) | 16 (14.7) | 28 (25.7) | 146 | Medium | 121 (55.5) | 29 (13.3) | 68 (31.2) | 271 | Medium | 186 (56.9) | 84 (25.7) | 96 (29.4) | 456 | Medium |
Soil Conservation | 65 (59.6) | 11 (10.1) | 33 (30.3) | 141 | Medium | 125 (57.3) | 28 (12.8) | 65 (29.8) | 278 | Medium | 190 (58.1) | 76 (23.2) | 98 (30.0) | 456 | Medium |
Planting of Drought- and Heat-Tolerant Crops | 62 (56.9) | 11 (10.1) | 36 (33.0) | 135 | Low | 108 (49.5) | 31 (14.2) | 79 (36.2) | 247 | Low | 170 (52.0) | 90 (27.5) | 115 (35.2) | 430 | Low |
Diet Improvement for Animals | 62 (56.9) | 11 (10.1) | 36 (33.0) | 135 | Low | 129 (59.2) | 35 (16.1) | 54 (24.8) | 293 | Medium | 191 (58.4) | 65 (19.9) | 90 (27.5) | 447 | Medium |
Climate-Smart Agricultural Practice | Level of Acceptance based on Environmental Friendliness | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mthonjaneni | uMhlathuze | Combined Analysis | |||||||||||||
A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | A No (%) | N No (%) | NA No (%) | ALI | CA | |
Agroforestry | 80 (73.4) | 18 (16.5) | 11 (10.1) | 178 | High | 128 (58.7) | 55 (25.2) | 35 (16.1) | 311 | Medium | 208 (63.6) | 73 (22.3) | 46 (14.1) | 489 | Medium |
Crop Rotation | 75 (68.8) | 25 (22.9) | 9 (8.3) | 175 | High | 146 (67.0) | 37 (17.0) | 35 (16.1) | 329 | Medium | 221 (67.6) | 62 (19.0) | 44 (13.5) | 504 | Medium |
Conservation Agriculture | 70 (64.2) | 28 (25.7) | 11 (10.1) | 168 | Medium | 135 (61.9) | 60 (27.5) | 23 (10.6) | 330 | Medium | 205 (62.7) | 88 (26.9) | 34 (10.4) | 498 | Medium |
Planting of Cover Crops | 70 (64.2) | 27 (24.8) | 12 (11.0) | 167 | Medium | 143 (65.6) | 25 (11.5) | 50 (22.9) | 311 | Medium | 213 (65.1) | 52 (15.9) | 62 (19.0) | 478 | Medium |
Use of Organic Manure | 73 (67.0) | 20 (18.3) | 16 (14.7) | 166 | Medium | 160 (73.4) | 38 (17.4) | 20 (9.2) | 358 | High | 233 (71.3) | 58 (17.7) | 36 (11.0) | 524 | High |
Crop Diversification | 68 (62.4) | 30 (27.5) | 11 (10.1) | 166 | Medium | 128 (58.7) | 40 (18.4) | 50 (22.9) | 296 | Low | 196 (59.9) | 70 (21.4) | 61 (18.6) | 462 | Medium |
Mulching | 67 (61.5) | 32 (29.4) | 10 (9.2) | 166 | Medium | 140 (64.2) | 30 (13.8) | 48 (22.0) | 310 | Medium | 207 (63.3) | 62 (19.0) | 58 (17.7) | 476 | Medium |
Soil Conservation | 66 (60.6) | 33 (30.3) | 10 (9.2) | 165 | Medium | 138 (63.3) | 62 (28.4) | 18 (8.3) | 338 | Medium | 204 (62.4) | 95 (29.1) | 28 (8.6) | 503 | Medium |
Integrated Crop-Livestock Management | 65 (59.6) | 35 (32.1) | 9 (11.0) | 165 | Medium | 140 (64.2) | 50 (22.9) | 28 (12.8) | 328 | Medium | 205 (62.7) | 85 (26.0) | 37 (11.3) | 495 | Medium |
Improved Grazing | 65 (59.6) | 32 (29.4) | 12 (11.0) | 162 | Medium | 135 (61.9) | 40 (18.4) | 43 (19.7) | 320 | Medium | 200 (61.2) | 72 (22.0) | 55 (16.8) | 472 | Medium |
Use of Wetlands | 62 (56.9) | 35 (32.1) | 12 (11.0) | 159 | Low | 113 (51.8) | 60 (27.5) | 45 (20.6) | 286 | Low | 175 (53.5) | 95 (29.1) | 57 (17.7) | 445 | Low |
Planting of Drought- and Heat-Tolerant Crops | 60 (55.1) | 38 (34.9) | 11 (10.1) | 158 | Low | 135 (61.9) | 66 (30.3) | 17 (7.8) | 336 | Medium | 195 (59.6) | 104 (31.8) | 28 (8.6) | 494 | Medium |
Efficient Manure Management | 60 (55.1) | 38 (34.9) | 11 (10.1) | 158 | Low | 120 (55.1) | 38 (17.4) | 60 (27.5) | 320 | Medium | 180 (55.1) | 76 (23.2) | 71 (21.7) | 436 | Low |
Diet Improvement for Animals | 61 (56.0) | 36 (33.0) | 12 (11.0) | 158 | Low | 136 (62.4) | 46 (21.1) | 36 (16.5) | 330 | Medium | 197 (60.2) | 82 (25.1) | 48 (14.7) | 476 | Medium |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abegunde, V.O.; Sibanda, M.; Obi, A. Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa. Agriculture 2020, 10, 52. https://doi.org/10.3390/agriculture10030052
Abegunde VO, Sibanda M, Obi A. Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa. Agriculture. 2020; 10(3):52. https://doi.org/10.3390/agriculture10030052
Chicago/Turabian StyleAbegunde, Victor O., Melusi Sibanda, and Ajuruchukwu Obi. 2020. "Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa" Agriculture 10, no. 3: 52. https://doi.org/10.3390/agriculture10030052
APA StyleAbegunde, V. O., Sibanda, M., & Obi, A. (2020). Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa. Agriculture, 10(3), 52. https://doi.org/10.3390/agriculture10030052