Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions
Abstract
1. Introduction
2. HPT and Peripheral Regulation of TH Metabolism during Ageing
3. TH and Other Pathways Involved in Preservation of FOR and Ovarian Health
4. Circulating TH/TSH Levels and Premature Ovarian Dysfunctions
5. Peripheral TH Metabolism/Signalling and Markers of Ovarian Reserve: Potential “Local” Crosstalk
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pelosi, E.; Forabosco, A.; Schlessinger, D. Genetics of the ovarian reserve. Front Genet. 2015, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, N.P.; Sakkas, E.; Vaiarelli, A.; Poppe, K.; Camus, M.; Tournaye, H. Thyroid autoimmunity, hypothyroidism and ovarian reserve: A cross-sectional study of 5000 women based on age-specific AMH values. Hum. Reprod. 2015, 30, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Little, A.G. Local Regulation of Thyroid Hormone Signaling. Vitam Horm. 2018, 106, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, D.; Ambrosino, C. Non-coding RNAs as integrators of the effects of age, genes, and environment on ovarian aging. Cell Death Dis. 2019, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, D.; Porreca, I.; Ceccarelli, M.; Threadgill, D.W.; Barrington, W.T.; Petriella, A.; D’Angelo, F.; Cobellis, G.; De Stefano, F.; D’Agostino, M.N.; et al. Transcriptional landscape of mouse-aged ovaries reveals a unique set of non-coding RNAs associated with physiological and environmental ovarian dysfunctions. Cell Death Discov. 2018, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Shupnik, M.A.; Ridgway, E.C.; Chin, W.W. Molecular biology of thyrotropin. Endocr. Rev. 1989, 10, 459–475. [Google Scholar] [CrossRef]
- Joseph-Bravo, P.; Jaimes-Hoy, L.; Uribe, R.M.; Charli, J.L. 60 Years of Neuroendocrinology: Trh, the first hypophysiotropic releasing hormone isolated: Control of the pituitary-thyroid axis. J. Endocrinol. 2015, 226, T85–T100. [Google Scholar] [CrossRef]
- Kakucska, I.; Rand, W.; Lechan, R.M. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology 1992, 130, 2845–2850. [Google Scholar] [CrossRef]
- Larsen, P.R. Thyroid-pituitary interaction: Feedback regulation of thyrotropin secretion by thyroid hormones. N. Engl. J. Med. 1982, 306, 23–32. [Google Scholar] [CrossRef]
- Fonseca, T.L.; Correa-Medina, M.; Campos, M.P.; Wittmann, G.; Werneck-de-Castro, J.P.; Arrojo e Drigo, R.; Mora-Garzon, M.; Ueta, C.B.; Caicedo, A.; Fekete, C.; et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Investig. 2013, 123, 1492–1500. [Google Scholar] [CrossRef]
- Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 1996, 379, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Wang, R.; Kreman, T.M.; Sheffield, V.C.; Karniski, L.P. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat. Genet. 1999, 21, 440–443. [Google Scholar] [CrossRef]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeold, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002, 23, 38–89. [Google Scholar] [CrossRef] [PubMed]
- Peeters, R.P.; Visser, T.J. Metabolism of Thyroid Hormone. 2000. Available online: https://www.thyroidmanager.org/chapter/metabolism-of-thyroid-hormone/ (accessed on 1 March 2020).
- Lum, S.M.; Nicoloff, J.T.; Spencer, C.A.; Kaptein, E.M. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J. Clin. Investig. 1984, 73, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.J.; Fiering, S.N.; Thai, B.; Wu, S.Y.; St Germain, E.; Parlow, A.F.; St Germain, D.L.; Galton, V.A. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 2006, 147, 580–589. [Google Scholar] [CrossRef]
- Visser, T.J. Role of sulfation in thyroid hormone metabolism. Chem. Biol. Interact. 1994, 92, 293–303. [Google Scholar] [CrossRef]
- Hernandez, A. Structure and function of the type 3 deiodinase gene. Thyroid 2005, 15, 865–874. [Google Scholar] [CrossRef]
- Moreno, M.; Giacco, A.; Di Munno, C.; Goglia, F. Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol. Cell Endocrinol. 2017, 458, 121–126. [Google Scholar] [CrossRef]
- Lanni, A.; Moreno, M.; Cioffi, M.; Goglia, F. Effect of 3,3’-diiodothyronine and 3,5-diiodothyronine on rat liver oxidative capacity. Mol. Cell Endocrinol. 1992, 86, 143–148. [Google Scholar] [CrossRef]
- Gnocchi, D.; Ellis, E.C.S.; Johansson, H.; Eriksson, M.; Bruscalupi, G.; Steffensen, K.R.; Parini, P. Diiodothyronines regulate metabolic homeostasis in primary human hepatocytes by modulating mTORC1 and mTORC2 activity. Mol. Cell Endocrinol. 2020, 499, 110604. [Google Scholar] [CrossRef] [PubMed]
- Pappa, T.; Ferrara, A.M.; Refetoff, S. Inherited defects of thyroxine-binding proteins. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Hagenbuch, B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Friesema, E.C.; Kuiper, G.G.; Jansen, J.; Visser, T.J.; Kester, M.H. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol. Endocrinol. 2006, 20, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, F.; Hagenbuch, B.; Stieger, B.; Klenk, U.; Folkers, G.; Meier, P.J. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol. Endocrinol. 2002, 16, 2283–2296. [Google Scholar] [CrossRef]
- Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef]
- Davis, P.J.; Davis, F.B.; Mousa, S.A.; Luidens, M.K.; Lin, H.Y. Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 99–115. [Google Scholar] [CrossRef]
- Davis, P.J.; Glinsky, G.V.; Lin, H.Y.; Leith, J.T.; Hercbergs, A.; Tang, H.Y.; Ashur-Fabian, O.; Incerpi, S.; Mousa, S.A. Corrigendum: “Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin alphavbeta3 by Thyroid Hormone and Nanoparticulate Tetrac”. Front. Endocrinol. (Lausanne) 2015, 6, 98. [Google Scholar] [CrossRef]
- Bergh, J.J.; Lin, H.Y.; Lansing, L.; Mohamed, S.N.; Davis, F.B.; Mousa, S.; Davis, P.J. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005, 146, 2864–2871. [Google Scholar] [CrossRef]
- Zhang, X.K.; Kahl, M. Regulation of retinoid and thyroid hormone action through homodimeric and heterodimeric receptors. Trends Endocrinol. Metab. 1993, 4, 156–162. [Google Scholar] [CrossRef]
- Harvey, C.B.; Williams, G.R. Mechanism of thyroid hormone action. Thyroid 2002, 12, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Lonard, D.M.; O’Malley, B.W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med. 2013, 65, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.Y. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev. Endocr. Metab. Disord. 2000, 1, 9–18. [Google Scholar] [CrossRef]
- Davis, P.J.; Leonard, J.L.; Davis, F.B. Mechanisms of nongenomic actions of thyroid hormone. Front. Neuroendocrinol. 2008, 29, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Goglia, F.; Leonard, J.L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 2015, 12, 111–121. [Google Scholar] [CrossRef]
- Silvestri, E.; Lombardi, A.; de Lange, P.; Schiavo, L.; Lanni, A.; Goglia, F.; Visser, T.J.; Moreno, M. Age-related changes in renal and hepatic cellular mechanisms associated with variations in rat serum thyroid hormone levels. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E1160–E1168. [Google Scholar] [CrossRef]
- Pfundt, R.; Del Rosario, M.; Vissers, L.; Kwint, M.P.; Janssen, I.M.; de Leeuw, N.; Yntema, H.G.; Nelen, M.R.; Lugtenberg, D.; Kamsteeg, E.J.; et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 2017, 19, 667–675. [Google Scholar] [CrossRef]
- Colicchia, M.; Campagnolo, L.; Baldini, E.; Ulisse, S.; Valensise, H.; Moretti, C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum. Reprod. Update 2014, 20, 884–904. [Google Scholar] [CrossRef]
- Maia, A.L.; Kieffer, J.D.; Harney, J.W.; Larsen, P.R. Effect of 3,5,3’-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice. Endocrinology 1995, 136, 4842–4849. [Google Scholar] [CrossRef]
- Maia, A.L.; Goemann, I.M.; Meyer, E.L.; Wajner, S.M. Deiodinases: The balance of thyroid hormone: Type 1 iodothyronine deiodinase in human physiology and disease. J. Endocrinol. 2011, 209, 283–297. [Google Scholar] [CrossRef]
- Leng, O.; Razvi, S. Hypothyroidism in the older population. Thyroid Res. 2019, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Weghofer, A.; Barad, D.H.; Darmon, S.; Kushnir, V.A.; Gleicher, N. What affects functional ovarian reserve, thyroid function or thyroid autoimmunity? Reprod. Biol. Endocrinol. 2016, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Feart, C.; Pallet, V.; Boucheron, C.; Higueret, D.; Alfos, S.; Letenneur, L.; Dartigues, J.F.; Higueret, P. Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur. J. Endocrinol. 2005, 152, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, J.D. Changes in pituitary function with ageing and implications for patient care. Nat. Rev. Endocrinol. 2013, 9, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.C.; Dumitrescu, A.; Gereben, B.; Ribeiro, M.O.; Fonseca, T.L.; Fernandes, G.W.; Bocco, B. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr. Rev. 2019, 40, 1000–1047. [Google Scholar] [CrossRef]
- Kovanci, E.; Rohozinski, J.; Simpson, J.L.; Heard, M.J.; Bishop, C.E.; Carson, S.A. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil. Steril. 2007, 87, 143–146. [Google Scholar] [CrossRef]
- Persani, L.; Rossetti, R.; Cacciatore, C.; Fabre, S. Genetic defects of ovarian TGF-beta-like factors and premature ovarian failure. J. Endocrinol. Investig. 2011, 34, 244–251. [Google Scholar] [CrossRef]
- Rossetti, R.; Ferrari, I.; Bonomi, M.; Persani, L. Genetics of primary ovarian insufficiency. Clin. Genet. 2016, 91, 183–198. [Google Scholar] [CrossRef]
- Huhtaniemi, I.; Hovatta, O.; La Marca, A.; Livera, G.; Monniaux, D.; Persani, L.; Heddar, A.; Jarzabek, K.; Laisk-Podar, T.; Salumets, A.; et al. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends Endocrinol. Metab. 2018, 29, 400–419. [Google Scholar] [CrossRef]
- Kumar, R.; Alwani, M.; Kosta, S.; Kaur, R.; Agarwal, S. BMP15 and GDF9 Gene Mutations in Premature Ovarian Failure. J. Reprod. Infertil. 2017, 18, 185–189. [Google Scholar]
- Roy, S.; Gandra, D.; Seger, C.; Biswas, A.; Kushnir, V.A.; Gleicher, N.; Kumar, T.R.; Sen, A. Oocyte-Derived Factors (GDF9 and BMP15) and FSH Regulate AMH Expression Via Modulation of H3K27AC in Granulosa Cells. Endocrinology 2018, 159, 3433–3445. [Google Scholar] [CrossRef] [PubMed]
- Uzumcu, M.; Kuhn, P.E.; Marano, J.E.; Armenti, A.E.; Passantino, L. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol. 2006, 191, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Xiong, G.P.; Luo, X.M.; Huang, S.Z.; Liu, J.; Huang, X.L.; Xie, Y.Z.; Lin, W.P. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol. Reprod. 2016, 94, 144. [Google Scholar] [CrossRef] [PubMed]
- Maeso, I.; Irimia, M.; Tena, J.J.; Casares, F.; Gomez-Skarmeta, J.L. Deep conservation of cis-regulatory elements in metazoans. Philos. Trans. R. Soc. Lond B Biol. Sci. 2013, 368, 20130020. [Google Scholar] [CrossRef] [PubMed]
- Van der Ven, L.T.; van den Brandhof, E.J.; Vos, J.H.; Power, D.M.; Wester, P.W. Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish. Environ. Sci. Technol. 2006, 40, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 2013, 190, 68–75. [Google Scholar] [CrossRef]
- Chen, Y.D.; Hoch, F.L. Mitochondrial inner membrane in hypothyroidism. Arch. Biochem. Biophys. 1976, 172, 741–744. [Google Scholar] [CrossRef][Green Version]
- Heijlen, M.; Houbrechts, A.M.; Darras, V.M. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. Gen. Comp. Endocrinol. 2013, 188, 289–296. [Google Scholar] [CrossRef]
- Duarte-Guterman, P.; Navarro-Martin, L.; Trudeau, V.L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen. Comp. Endocrinol. 2014, 203, 69–85. [Google Scholar] [CrossRef]
- Aghajanova, L.; Lindeberg, M.; Carlsson, I.B.; Stavreus-Evers, A.; Zhang, P.; Scott, J.E.; Hovatta, O.; Skjoldebrand-Sparre, L. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod. Biomed. Online 2009, 18, 337–347. [Google Scholar] [CrossRef]
- Rae, M.T.; Niven, D.; Ross, A.; Forster, T.; Lathe, R.; Critchley, H.O.; Ghazal, P.; Hillier, S.G. Steroid signalling in human ovarian surface epithelial cells: The response to interleukin-1alpha determined by microarray analysis. J. Endocrinol. 2004, 183, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Rae, M.T.; Gubbay, O.; Kostogiannou, A.; Price, D.; Critchley, H.O.; Hillier, S.G. Thyroid hormone signaling in human ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 2007, 92, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Kohrle, J. Local activation and inactivation of thyroid hormones: The deiodinase family. Mol. Cell Endocrinol. 1999, 151, 103–119. [Google Scholar] [CrossRef]
- Zhang, S.S.; Carrillo, A.J.; Darling, D.S. Expression of multiple thyroid hormone receptor mRNAs in human oocytes, cumulus cells, and granulosa cells. Mol. Hum. Reprod. 1997, 3, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Stavreus Evers, A. Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility. Front. Endocrinol. (Lausanne) 2012, 3, 50. [Google Scholar] [CrossRef]
- Cramer, D.W.; Sluss, P.M.; Powers, R.D.; McShane, P.; Ginsburgs, E.S.; Hornstein, M.D.; Vitonis, A.F.; Barbieri, R.L. Serum prolactin and TSH in an in vitro fertilization population: Is there a link between fertilization and thyroid function? J. Assist. Reprod. Genet. 2003, 20, 210–215. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, G.; Tsang, B.K. Interactions of thyroid hormone and FSH in the regulation of rat granulosa cell apoptosis. Front. Biosci (Elite Ed). 2011, 3, 1401–1413. [Google Scholar] [CrossRef]
- Verga Falzacappa, C.; Timperi, E.; Bucci, B.; Amendola, D.; Piergrossi, P.; D’Amico, D.; Santaguida, M.G.; Centanni, M.; Misiti, S. T(3) preserves ovarian granulosa cells from chemotherapy-induced apoptosis. J. Endocrinol. 2012, 215, 281–289. [Google Scholar] [CrossRef]
- Doufas, A.G.; Mastorakos, G. The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann. N. Y. Acad. Sci. 2000, 900, 65–76. [Google Scholar] [CrossRef]
- Porazzi, P.; Calebiro, D.; Benato, F.; Tiso, N.; Persani, L. Thyroid gland development and function in the zebrafish model. Mol. Cell Endocrinol. 2009, 312, 14–23. [Google Scholar] [CrossRef]
- Schmidt, F.; Braunbeck, T. Alterations along the Hypothalamic-Pituitary-Thyroid Axis of the Zebrafish (Danio rerio) after Exposure to Propylthiouracil. J. Thyroid Res. 2011, 376243. [Google Scholar] [CrossRef] [PubMed]
- Mukhi, S.; Torres, L.; Patino, R. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios. Gen. Comp. Endocrinol. 2007, 150, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, X.; Deng, J.; Hecker, M.; Al-Khedhairy, A.; Giesy, J.P.; Zhou, B. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ. Sci. Technol. 2010, 45, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; Ng, T.B. Effect of hypothyroidism induced by propylthiouracil and thiourea on male and female reproductive systems of neonatal mice. J. Exp. Zool. 1995, 273, 160–169. [Google Scholar] [CrossRef]
- Meng, L.; Rijntjes, E.; Swarts, H.J.; Keijer, J.; Teerds, K.J. Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats. J. Ovarian Res. 2017, 10, 19. [Google Scholar] [CrossRef]
- Meng, L.; Jan, S.Z.; Hamer, G.; van Pelt, A.M.; van der Stelt, I.; Keijer, J.; Teerds, K.J. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol. Reprod. 2018, 99, 853–863. [Google Scholar] [CrossRef]
- Meng, L.; Rijntjes, E.; Swarts, H.; Bunschoten, A.; van der Stelt, I.; Keijer, J.; Teerds, K. Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development and Ovulation Rate and Is Associated with Oxidative Stress. Biol. Reprod. 2016, 94, 90. [Google Scholar] [CrossRef]
- Serakides, R.; Nunes, V.A.; Nascimiento, E.F.D.; Ribeiro, A.F.C.; Silva, C.M.D. Foliculogênese e esteroidogênese ovarianas em ratas adultas hipertireóideas. Arq. Bras. Endocrinol. Metab. 2001, 45, 258–264. [Google Scholar] [CrossRef]
- Fedail, J.S.; Zheng, K.; Wei, Q.; Kong, L.; Shi, F. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 2014, 46, 594–604. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, Z.; Niu, W.; Zhu, B.; Xia, G. Effect of different culture systems and 3, 5, 3’-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice. PLoS ONE 2013, 8, e61947. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Umezu, M.; Sato, E. Improvement of follicular development rather than gonadotrophin secretion by thyroxine treatment in infertile immature hypothyroid rdw rats. J. Reprod. Fertil. 2000, 119, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Sulieman, F.J.; Li, J.; Wei, Q.; Xu, M.; Shi, F. Nitric oxide and thyroid hormone receptor alpha 1 contribute to ovarian follicular development in immature hyper- and hypo-thyroid rats. Reprod. Biol. 2015, 15, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, G.; de Rooij, D.G.; de Jong, F.H.; van den Hurk, R. Effect of hypothyroidism on ovarian follicular development, granulosa cell proliferation and peripheral hormone levels in the prepubertal rat. Eur. J. Endocrinol. 1996, 134, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Torrealday, S.; Kodaman, P.; Pal, L. Premature Ovarian Insufficiency—An update on recent advances in understanding and management. F1000Research 2017, 6, 2069. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef]
- Ayesha, V.J.; Goswami, D. Premature Ovarian Failure: An Association with Autoimmune Diseases. J. Clin. Diagn. Res. 2016, 10, QC10–QC12. [Google Scholar] [CrossRef]
- Goswami, R.; Marwaha, R.K.; Goswami, D.; Gupta, N.; Ray, D.; Tomar, N.; Singh, S. Prevalence of thyroid autoimmunity in sporadic idiopathic hypoparathyroidism in comparison to type 1 diabetes and premature ovarian failure. J. Clin. Endocrinol. Metab. 2006, 91, 4256–4259. [Google Scholar] [CrossRef]
- Novosad, J.A.; Kalantaridou, S.N.; Tong, Z.B.; Nelson, L.M. Ovarian antibodies as detected by indirect immunofluorescence are unreliable in the diagnosis of autoimmune premature ovarian failure: A controlled evaluation. BMC Womens Health 2003, 3, 2. [Google Scholar] [CrossRef]
- Gleicher, N.; Ryan, E.; Weghofer, A.; Blanco-Mejia, S.; Barad, D.H. Miscarriage rates after dehydroepiandrosterone (DHEA) supplementation in women with diminished ovarian reserve: A case control study. Reprod. Biol. Endocrinol. 2009, 7, 108. [Google Scholar] [CrossRef]
- Krassas, G.E.; Poppe, K.; Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 2010, 31, 702–755. [Google Scholar] [CrossRef]
- Michalakis, K.G.; Mesen, T.B.; Brayboy, L.M.; Yu, B.; Richter, K.S.; Levy, M.; Widra, E.; Segars, J.H. Subclinical elevations of thyroid-stimulating hormone and assisted reproductive technology outcomes. Fertil. Steril. 2011, 95, 2634–2637. [Google Scholar] [CrossRef] [PubMed]
- Bahri, S.; Tehrani, F.R.; Amouzgar, A.; Rahmati, M.; Tohidi, M.; Vasheghani, M.; Azizi, F. Overtime trend of thyroid hormones and thyroid autoimmunity and ovarian reserve: A longitudinal population study with a 12-year follow up. BMC Endocr. Disord. 2019, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Huang, Y.L.; Tzeng, C.R.; Huang, R.L.; Chen, C.H. Idiopathic Low Ovarian Reserve Is Associated with More Frequent Positive Thyroid Peroxidase Antibodies. Thyroid 2017, 27, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Poppe, K.; Glinoer, D.; Van Steirteghem, A.; Tournaye, H.; Devroey, P.; Schiettecatte, J.; Velkeniers, B. Thyroid dysfunction and autoimmunity in infertile women. Thyroid 2002, 12, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Shimasaki, S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitam. Horm. 2018, 107, 317–348. [Google Scholar] [CrossRef]
- Mayer, A.; Fouquet, B.; Pugeat, M.; Misrahi, M. BMP15 “knockout-like” effect in familial premature ovarian insufficiency with persistent ovarian reserve. Clin. Genet. 2017, 92, 208–212. [Google Scholar] [CrossRef]
- Chu, Y.L.; Xu, Y.R.; Yang, W.X.; Sun, Y. The role of FSH and TGF-beta superfamily in follicle atresia. Aging (Albany N.Y.) 2018, 10, 305–321. [Google Scholar] [CrossRef]
- Price, C.A.; Estienne, A. The life and death of the dominant follicle. Anim. Reprod. 2018, 15 (Suppl. S1), 680–690. [Google Scholar] [CrossRef]
- Wakim, A.N.; Polizotto, S.L.; Buffo, M.J.; Marrero, M.A.; Burholt, D.R. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil. Steril. 1993, 59, 1187–1190. [Google Scholar] [CrossRef]
- Canipari, R.; Mangialardo, C.; Di Paolo, V.; Alfei, F.; Ucci, S.; Russi, V.; Santaguida, M.G.; Virili, C.; Segni, M.; Misiti, S.; et al. Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J. Endocrinol. Investig. 2019, 42, 271–282. [Google Scholar] [CrossRef]
- Maruo, T.; Hayashi, M.; Matsuo, H.; Yamamoto, T.; Okada, H.; Mochizuki, M. The role of thyroid hormone as a biological amplifier of the actions of follicle-stimulating hormone in the functional differentiation of cultured porcine granulosa cells. Endocrinology 1987, 121, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, Y.; Ding, Y.; Heng, D.; Xu, K.; Liu, W.; Zhang, C. Role of CYP51 in the Regulation of T3 and FSH-Induced Steroidogenesis in Female Mice. Endocrinology 2017, 158, 3974–3987. [Google Scholar] [CrossRef]
- De Vincentis, S.; Monzani, M.L.; Brigante, G. Crosstalk between gonadotropins and thyroid axis. Minerva Ginecol. 2018, 70, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Oh, G.S.; Yoon, J.; Lee, G.G.; Lee, K.U.; Kim, S.W. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. J. Clin. Investig. 2018, 125, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Krieger, C.C.; Perry, J.D.; Morgan, S.J.; Kahaly, G.J.; Gershengorn, M.C. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 2017, 158, 3676–3683. [Google Scholar] [CrossRef]
- Sun, S.C.; Hsu, P.J.; Wu, F.J.; Li, S.H.; Lu, C.H.; Luo, C.W. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J. Biol. Chem. 2010, 285, 3758–3765. [Google Scholar] [CrossRef]
- Silva, J.F.; Ocarino, N.M.; Serakides, R. Thyroid hormones and female reproduction. Biol. Reprod. 2018, 99, 907–921. [Google Scholar] [CrossRef]
- Habibi, H.R.; Nelson, E.R.; Allan, E.R. New insights into thyroid hormone function and modulation of reproduction in goldfish. Gen. Comp. Endocrinol. 2012, 175, 19–26. [Google Scholar] [CrossRef]
- Nelson, E.R.; Allan, E.R.; Pang, F.Y.; Habibi, H.R. Thyroid hormone and reproduction: Regulation of estrogen receptors in goldfish gonads. Mol. Reprod. Dev. 2010, 77, 784–794. [Google Scholar] [CrossRef]
- Howland, B.E.; Ibrahim, E.A. Hyperthyroidism and gonadotropin secretion in male and female rats. Experientia 1973, 29, 1398–1399. [Google Scholar] [CrossRef]
- Franklyn, J.A.; Wood, D.F.; Balfour, N.J.; Ramsden, D.B.; Docherty, K.; Chin, W.W.; Sheppard, M.C. Effect of hypothyroidism and thyroid hormone replacement in vivo on pituitary cytoplasmic concentrations of thyrotropin-beta and alpha-subunit messenger ribonucleic acids. Endocrinology 1987, 120, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
- Samuels, M.H.; Wierman, M.E.; Wang, C.; Ridgway, E.C. The effect of altered thyroid status on pituitary hormone messenger ribonucleic acid concentrations in the rat. Endocrinology 1989, 124, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Yoshiura, Y.; Sohn, Y.C.; Munakata, A.; Kobayashi, M.; Aida, K. Molecular cloning of the cDNA encoding the B subunit of thyrotropin and regulation of its gene expression by thyroid hormones in the goldfish, Carassius auratus. Fish Physiol. Biochem. 1999, 21, 201–210. [Google Scholar] [CrossRef]
- Hapon, M.B.; Simoncini, M.; Via, G.; Jahn, G.A. Effect of hypothyroidism on hormone profiles in virgin, pregnant and lactating rats, and on lactation. Reproduction 2003, 126, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Houbrechts, A.M.; Vergauwen, L.; Bagci, E.; Van Houcke, J.; Heijlen, M.; Kulemeka, B.; Hyde, D.R.; Knapen, D.; Darras, V.M. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol. Cell Endocrinol. 2016, 424, 81–93. [Google Scholar] [CrossRef]
- Houbrechts, A.M.; Van Houcke, J.; Darras, V.M. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J. Endocrinol. 2019. [Google Scholar] [CrossRef]
- Lavado-Autric, R.; Calvo, R.M.; de Mena, R.M.; de Escobar, G.M.; Obregon, M.J. Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 2012, 154, 529–536. [Google Scholar] [CrossRef]
- Hernandez, A.; Martinez, M.E.; Liao, X.H.; Van Sande, J.; Refetoff, S.; Galton, V.A.; St Germain, D.L. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 2007, 148, 5680–5687. [Google Scholar] [CrossRef]
- Schneider, M.J.; Fiering, S.N.; Pallud, S.E.; Parlow, A.F.; St Germain, D.L.; Galton, V.A. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 2001, 15, 2137–2148. [Google Scholar] [CrossRef]
- Salto, C.; Kindblom, J.M.; Johansson, C.; Wang, Z.; Gullberg, H.; Nordstrom, K.; Mansen, A.; Ohlsson, C.; Thoren, P.; Forrest, D.; et al. Ablation of TRalpha2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol. Endocrinol. 2001, 15, 2115–2128. [Google Scholar] [CrossRef][Green Version]
- Yin, D.; Ruan, X.; Tian, X.; Du, J.; Zhao, Y.; Cui, Y.; Li, Y.; Mueck, A.O. The relationship between thyroid function and metabolic changes in Chinese women with polycystic ovary syndrome. Gynecol. Endocrinol. 2017, 33, 332–335. [Google Scholar] [CrossRef] [PubMed]
Canonical Pathways Identified by Ingenuity Analysis (IPA) | Molecules (Genes) Identifying the Pathway | z-Score | −log(p-Value) | References Pointing out the Regulatory Role of THs Relative to the Pathway |
---|---|---|---|---|
EIF2 Signalling | Eif2s2, Eif3a, Eif3e, Eif3m, Eif5B, Rpl11, Rpl13a, Rpl15, Rpl17, Rpl26 | −3.207 | 23.10 | Torres_Manzo AP. et al.; Oxid Med Cell Longev 2018 Takahashi K. et al.; J Biol Chem. 2014 Goulart-Silva F. et al.; Thyroid 2012 Arrojo E Drigo R. et al; Molecular Endocrinology 2011 |
Regulation of eIF4 and p70S6K Signalling | Eif2s2, Eif3a, Eif3e, Eif3m, Paip2, Ppp2r5a, Rps12, Rps18, Rps23, Rps24 | _ | 12.40 | Ediriweera MK. et al.; Semin Cancer Biol. 2019 Manfredi GI. et al.; Endocrine 2015 Kenessey A. and Ojamaa K.; The Journal of Biological Chemistry 2006 |
Oxidative Phosphorylation | Atp5mc2, Atp5mg, Atp5po, Cox17, Cox6a1, Cox7a2l, Ndufa1, Ndufa4, Ndufb1, Ndufb11 | −2.887 | 8.97 | Lombardi A. et al.; Front Physiol. 2015 Harper ME. and Seifert EL.; Thyroid 2008 Weitzel JM. et al.; Exp Physiol. 2004 Martinez B. et al.; Journal of Neurochemistry 2001 Harper ME. et al.; Biochem Soc Trans. 1993 |
mTOR Signalling | Eif3a, Eif3e, Eif3m, Ppp2r5a, Rps12, Rps18, Rps23, Rps24, Rps25, Rps27a | _ | 8.42 | Varela L. et al.; J Pathol. 2012 Kenessey A. and Ojamaa K.; The Journal of Biological Chemistry 2006 Cao X. et al.; Molecular Endocrinology 2005 |
Protein Ubiquitination Pathway | Bag1, Hsp90aa1, Hspa9, Psma2, Psma 4, Psma 7, Psmb1, Psmb3, Psmb5, Psmb6 | _ | 7.71 | Egri P. and Gereben B.; J Mol Endocrinol. 2014 Dace A. et al.; PNAS 2000 |
Mitochondrial Dysfunction | Atp5mc2, Atp5mg, Atp5po, Cox17, Cox6a1, Cox7a2l, Gpx4, Ndufa1, Ndufa4, Ndufb1 | _ | 7.69 | Tilly JL and Sinclair DA. Cell Metab. 2013 Harper ME. and Seifert EL.; Thyroid 2008 Venditti P. and Di Meo S.; Cell Mol Life Sci. 2006 Siciliano G. et al.; Mol Med. 2002Chen YD. and Hoch FL.; Arch Biochem Biophys. 1976 |
Sirtuin Signalling Pathway | H3f3a/H3f3b, Ndufa1, Ndufa4, Ndufb1, Ndufb11, Ndufb9, Polr1d, Sdhb, Slc25a4, Tomm70 | 0.378 | 3.10 | Al-khaldi A. and Sultan S.; BMC Endocr Disord. 2019 Xiao-Ling Zhou et al.; J Ovarian Res. 2014 Suh J. et al.; PLoS One 2013 Akieda-Asai et al.; PLoS One 2010 |
TCA Cycle II (Eukaryotic) | Dld, Mdh1, Sdhb | _ | 2.76 | Zhou J. et al.; Front Physiol. 2019 Mitchell CS. et al.; J Clin Invest. 2010 |
Mitotic Roles of Polo-Like Kinase | Anapc13, Cdc16, Hsp90aa1, Ppp2r5a | _ | 2.35 | Wang K. et al.; J Biol Chem. 2014 Russo A.M et al.; Thyroid 2013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colella, M.; Cuomo, D.; Giacco, A.; Mallardo, M.; De Felice, M.; Ambrosino, C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J. Clin. Med. 2020, 9, 1679. https://doi.org/10.3390/jcm9061679
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. Journal of Clinical Medicine. 2020; 9(6):1679. https://doi.org/10.3390/jcm9061679
Chicago/Turabian StyleColella, Marco, Danila Cuomo, Antonia Giacco, Massimo Mallardo, Mario De Felice, and Concetta Ambrosino. 2020. "Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions" Journal of Clinical Medicine 9, no. 6: 1679. https://doi.org/10.3390/jcm9061679
APA StyleColella, M., Cuomo, D., Giacco, A., Mallardo, M., De Felice, M., & Ambrosino, C. (2020). Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. Journal of Clinical Medicine, 9(6), 1679. https://doi.org/10.3390/jcm9061679