Burdick, H.; Lam, C.; Mataraso, S.; Siefkas, A.; Braden, G.; Dellinger, R.P.; McCoy, A.; Vincent, J.-L.; Green-Saxena, A.; Barnes, G.;
et al. Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial. J. Clin. Med. 2020, 9, 3834.
https://doi.org/10.3390/jcm9123834
AMA Style
Burdick H, Lam C, Mataraso S, Siefkas A, Braden G, Dellinger RP, McCoy A, Vincent J-L, Green-Saxena A, Barnes G,
et al. Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial. Journal of Clinical Medicine. 2020; 9(12):3834.
https://doi.org/10.3390/jcm9123834
Chicago/Turabian Style
Burdick, Hoyt, Carson Lam, Samson Mataraso, Anna Siefkas, Gregory Braden, R. Phillip Dellinger, Andrea McCoy, Jean-Louis Vincent, Abigail Green-Saxena, Gina Barnes,
and et al. 2020. "Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial" Journal of Clinical Medicine 9, no. 12: 3834.
https://doi.org/10.3390/jcm9123834
APA Style
Burdick, H., Lam, C., Mataraso, S., Siefkas, A., Braden, G., Dellinger, R. P., McCoy, A., Vincent, J.-L., Green-Saxena, A., Barnes, G., Hoffman, J., Calvert, J., Pellegrini, E., & Das, R.
(2020). Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial. Journal of Clinical Medicine, 9(12), 3834.
https://doi.org/10.3390/jcm9123834