Advances in Precision Health and Emerging Diagnostics for Women
Abstract
:1. Introduction
2. Maiden
2.1. Puberty
2.2. Menstrual Health
2.3. Sexually Transmitted Infections
2.4. Other Conditions
3. Mother
3.1. Fertility and Pregnancy
3.2. Planning for the Future: Ovarian Reserve and Follicle Tracking
3.3. The Future: Molecular Testing to Identify Women-Specific Diseases
3.4. Pregnancy Testing and Monitoring
3.4.1. Non-invasive genetic testing
3.4.2. Labor monitoring
3.5. Postpartum Care
3.5.1. Breastfeeding
3.5.2. Urinary incontinence
4. Crone
Menopause
5. Topics throughout Women’s Lifecycles
5.1. Cardiovascular Disease
5.2. Obesity
5.3. Cancer
5.3.1. Cervical cancer
5.3.2. Breast cancer
5.3.3. Ovarian cancer
5.4. Mental Health
5.5. Alzheimer’s Disease
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. Every Cell Has a Sex; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Grabowska, A. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? J. Neurosci. Res. 2017, 95, 200–212. [Google Scholar] [CrossRef]
- Laws, K.R.; Irvine, K.; Gale, T.M. Sex differences in cognitive impairment in Alzheimer’s disease. World J. Psychiatry 2016, 6, 54–65. [Google Scholar] [CrossRef]
- Daniels, S.R. The Barker hypothesis revisited. J. Pediatr. 2016, 173, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Carpinello, O.J.; DeCherney, A.H.; Hill, M.J. Developmental Origins of Health and Disease: The History of the Barker Hypothesis and Assisted Reproductive Technology. Semin. Reprod. Med. 2018, 36, 177–182. [Google Scholar]
- Women and Heart Disease Fact Sheet|Data & Statistics|DHDSP|CDC. Available online: https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_women_heart.htm (accessed on 6 April 2019).
- Lacroix, A.E.; Langaker, M.D. Physiology, Menarche. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- McShane, M.; Perucho, J.; Olsakowski, M.; Gaughan, J.P.; Brown, R.T.; Feldman-Winter, L. Menstrual History-Taking at Annual Well Visits for Adolescent Girls. J. Pediatr. Adolesc. Gynecol. 2018, 31, 566–570. [Google Scholar] [CrossRef]
- Adams Hillard, P.J. Menstrual Cycles: Who Cares? We All Should. J. Pediatr. Adolesc. Gynecol. 2018, 31, 547–548. [Google Scholar] [CrossRef]
- Urteaga, I.; Albers, D.J.; Wheeler, M.V.; Druet, A.; Raffauf, H.; Elhadad, N. Towards Personalized Modeling of the Female Hormonal Cycle: Experiments with Mechanistic Models and Gaussian Processes. arXiv 2017, arXiv:1712.00117. [Google Scholar]
- Freis, A.; Freundl-Schütt, T.; Wallwiener, L.-M.; Baur, S.; Strowitzki, T.; Freundl, G.; Frank-Herrmann, P. Plausibility of Menstrual Cycle Apps Claiming to Support Conception. Front. Public Health 2018, 6, 98. [Google Scholar] [CrossRef]
- World Health Organization. A prospective multicentre trial of the ovulation method of natural family planning. I. the teaching phase ** Supported by the Special Programme of Research, Development and Research Training in Human Reproduction. Fertil. Steril. 1981, 36, 152–158. [Google Scholar] [CrossRef]
- Frank-Herrmann, P.; Heil, J.; Gnoth, C.; Toledo, E.; Baur, S.; Pyper, C.; Jenetzky, E.; Strowitzki, T.; Freundl, G. The effectiveness of a fertility awareness based method to avoid pregnancy in relation to a couple’s sexual behaviour during the fertile time: A prospective longitudinal study. Hum. Reprod. 2007, 22, 1310–1319. [Google Scholar] [CrossRef]
- Berglund Scherwitzl, E.; Lindén Hirschberg, A.; Scherwitzl, R. Identification and prediction of the fertile window using NaturalCycles. Eur. J. Contracept. Reprod. Health Care Off. J. Eur. Soc. Contracept. 2015, 20, 403–408. [Google Scholar] [CrossRef]
- Effectiveness of Fertility Awareness–Based Methods for: Obstetrics & Gynecology. Available online: https://journals.lww.com/greenjournal/Fulltext/2018/09000/Effectiveness_of_Fertility_Awareness_Based_Methods.8.aspx (accessed on 13 February 2019).
- Polis, C.B. Published analysis of contraceptive effectiveness of Daysy and DaysyView app is fatally flawed. Reprod. Health 2018, 15, 113. [Google Scholar] [CrossRef]
- Freundl, G.; Frank-Herrmann, P.; Godehardt, E.; Klemm, R.; Bachhofer, M. Retrospective clinical trial of contraceptive effectiveness of the electronic fertility indicator Ladycomp/Babycomp. Adv. Contracept. Off. J. Soc. Adv. Contracept. 1998, 14, 97–108. [Google Scholar] [CrossRef]
- Lazorwitz, A.; Aquilante, C.L.; Oreschak, K.; Sheeder, J.; Guiahi, M.; Teal, S. Influence of Genetic Variants on Steady-State Etonogestrel Concentrations Among Contraceptive Implant Users. Obstet. Gynecol. 2019, 133, 783–794. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, Division of STD Prevention. Sexually Transmitted Disease Surveillance 2017. Available online: https://www.cdc.gov/std/stats17/default.htm (accessed on 15 October 2018).
- Lunny, C.; Taylor, D.; Hoang, L.; Wong, T.; Gilbert, M.; Lester, R.; Krajden, M.; Ogilvie, G. Self-Collected versus Clinician-Collected Sampling for Chlamydia and Gonorrhea Screening: A Systemic Review and Meta-Analysis. PLoS ONE 2015, 10, e0132776. [Google Scholar] [CrossRef]
- Kachur, R.; Hall, W.; Coor, A.; Kinsey, J.; Collins, D.; Strona, F.V. The Use of Technology for Sexually Transmitted Disease Partner Services in the United States: A Structured Review. Sex. Transm. Dis. 2018, 45, 707–712. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Chapron, C.; Giudice, L.C.; Laufer, M.R.; Leyland, N.; Missmer, S.A.; Singh, S.S.; Taylor, H.S. Clinical diagnosis of endometriosis: A call to action. Am. J. Obstet. Gynecol. 2019, 220, 354.e1–354.e12. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Public Health Action Plan for the Detection, Prevention, and Management of Infertility; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014; p. 26.
- Chandra, A.; Copen, C.E.; Stephen, E.H. Infertility and impaired fecundity in the United States, 1982–2010: Data from the National Survey of Family Growth. Natl. Health Stat. Rep. 2013, 67, 1–18, 1 p following 19. [Google Scholar]
- Broer, S.L.; Broekmans, F.J.M.; Laven, J.S.E.; Fauser, B.C.J.M. Anti-Müllerian hormone: Ovarian reserve testing and its potential clinical implications. Hum. Reprod. Update 2014, 20, 688–701. [Google Scholar] [CrossRef]
- Burke, E.; Beqaj, S.; Douglas, N.; Luo, R. Concordance of Fingerstick and Venipuncture Sampling for Fertility Hormones. Obstet. Gynecol. 2019, 133, 343–348. [Google Scholar] [CrossRef]
- Shilaih, M.; de Clerck, V.; Falco, L.; Kübler, F.; Leeners, B. Pulse Rate Measurement during Sleep Using Wearable Sensors, and its Correlation with the Menstrual Cycle Phases, A Prospective Observational Study. Sci. Rep. 2017, 7, 1294. [Google Scholar] [CrossRef]
- Valente, S. The measurement of the oral and vaginal electrolytes as a new method of predicting ovulation. Clin. Exp. Obstet. Gynecol. 1988, 15, 66–70. [Google Scholar]
- Moreno, J.E.; Weitzman, G.A.; Doody, M.C.; Gibbons, W.E.; Besch, P.; Goldzieher, J.W. Temporal relation of ovulation to salivary and vaginal electrical resistance patterns: Implications for natural family planning. Contraception 1988, 38, 407–418. [Google Scholar] [CrossRef]
- Fernando, R.S.; Regas, J.; Betz, G. Ovulation prediction and detection with the CUE® Ovulation Predictor *. Hum. Reprod. 1988, 3, 419–424. [Google Scholar] [CrossRef]
- Koch, M.C.; Lermann, J.; van de Roemer, N.; Renner, S.K.; Burghaus, S.; Hackl, J.; Dittrich, R.; Kehl, S.; Oppelt, P.G.; Hildebrandt, T.; et al. Improving usability and pregnancy rates of a fertility monitor by an additional mobile application: Results of a retrospective efficacy study of Daysy and DaysyView app. Reprod. Health 2018, 15, 37. [Google Scholar] [CrossRef]
- Shilaih, M.; Goodale, B.M.; Falco, L.; Kübler, F.; Clerck, V.D.; Leeners, B. Modern fertility awareness methods: Wrist wearables capture the changes in temperature associated with the menstrual cycle. Biosci. Rep. 2018, 38, BSR20171279. [Google Scholar] [CrossRef]
- Benn, P.; Grati, F.R. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances. Ultrasound Obstet. Gynecol. 2018, 51, 429–433. [Google Scholar] [CrossRef]
- Thakoordeen, S.; Moodley, J.; Naicker, T. Candidate Gene, Genome-Wide Association and Bioinformatic Studies in Pre-eclampsia: A Review. Curr. Hypertens. Rep. 2018, 20, 91. [Google Scholar] [CrossRef]
- Huang, H.-L.; Chuang, L.-T.; Li, H.-H.; Lin, C.-P.; Glew, R.H. Docosahexaenoic acid in maternal and neonatal plasma phospholipids and milk lipids of Taiwanese women in Kinmen: Fatty acid composition of maternal blood, neonatal blood and breast milk. Lipids Health Dis. 2013, 12, 27. [Google Scholar] [CrossRef]
- Okolo, S.N.; Onwuanaku, C.; Okonji, M.; VanderJagt, D.J.; Millson, M.; Churchwell, C.; Glew, R.H. Concentration of eight trace minerals in milk and sera of mother-infant pairs in Northern Nigeria. J. Trop. Pediatr. 2000, 46, 160–162. [Google Scholar] [CrossRef] [Green Version]
- Bø, K. Urinary incontinence, pelvic floor dysfunction, exercise and sport. Sports Med. 2004, 34, 451–464. [Google Scholar]
- Price, N.; Dawood, R.; Jackson, S.R. Pelvic floor exercise for urinary incontinence: A systematic literature review. Maturitas 2010, 67, 309–315. [Google Scholar] [CrossRef]
- Glavind, K.; Nøhr, S.B.; Walter, S. Biofeedback and physiotherapy versus physiotherapy alone in the treatment of genuine stress urinary incontinence. Int. Urogynecol. J. 1996, 7, 339–343. [Google Scholar] [CrossRef]
- Moyer, A.M.; Miller, V.M.; Faubion, S.S. Could personalized management of menopause based on genomics become a reality? Pharmacogenomics 2016, 17, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.M.; Jenkins, G.D.; Biernacka, J.M.; Heit, J.A.; Huggins, G.S.; Hodis, H.N.; Budoff, M.J.; Lobo, R.A.; Taylor, H.S.; Manson, J.E.; et al. Pharmacogenomics of estrogens on changes in carotid artery intima-medial thickness and coronary arterial calcification: Kronos Early Estrogen Prevention Study. Physiol. Genom. 2015, 48, 33–41. [Google Scholar] [CrossRef]
- Boardman, H.M.; Hartley, L.; Eisinga, A.; Main, C.; Figuls, M.R.I.; Cosp, X.B.; Sanchez, R.G.; Knight, B. Hormone therapy for preventing cardiovascular disease in post—menopausal women. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Grodstein, F. A Prospective, Observational Study of Postmenopausal Hormone Therapy and Primary Prevention of Cardiovascular Disease. Ann. Intern. Med. 2000, 133, 933. [Google Scholar] [CrossRef]
- Kannel, W.B. Menopause and Risk of Cardiovascular Disease: The Framingham Study. Ann. Intern. Med. 1976, 85, 447. [Google Scholar] [CrossRef]
- Keller, K.M.; Howlett, S.E. Sex Differences in the Biology and Pathology of the Aging Heart. Can. J. Cardiol. 2016, 32, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhou, B.; Prinz, M.; Siegel, D. Proteomic Analysis of Menstrual Blood. Mol. Cell. Proteom. 2012, 11, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Ginsburg, G.S.; Simmons, L.A. Personalized medicine in women’s obesity prevention and treatment: Implications for research, policy and practice: Personalized medicine in women’s obesity. Obes. Rev. 2013, 14, 145–161. [Google Scholar] [CrossRef]
- Mehta, P.K.; Johnson, B.D.; Kenkre, T.S.; Eteiba, W.; Sharaf, B.; Pepine, C.J.; Reis, S.E.; Rogers, W.J.; Kelsey, S.F.; Thompson, D.V.; et al. Sudden Cardiac Death in Women with Suspected Ischemic Heart Disease, Preserved Ejection Fraction, and No Obstructive Coronary Artery Disease: A Report from the Women’s Ischemia Syndrome Evaluation Study. J. Am. Heart Assoc. 2017, 6, e005501. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, J.; Kang, S.; Lee, Y.; Baek, H.; Park, K. CardioGuard: A Brassiere-Based Reliable ECG Monitoring Sensor System for Supporting Daily Smartphone Healthcare Applications. Telemed. J. E-Health 2014, 20, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Stewart, B.W.; Bray, F.; Forman, D.; Ohgaki, H.; Straif, K.; Ullrich, A.; Wild, C.P. Cancer prevention as part of precision medicine: ‘Plenty to be done’. Carcinogenesis 2016, 37, 2–9. [Google Scholar] [CrossRef]
- Lippman, S.M. Cancer Prevention Research: Back to the Future. Cancer Prev. Res. 2009, 2, 503–513. [Google Scholar] [CrossRef]
- Ogino, S.; Fuchs, C.S.; Giovannucci, E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev. Mol. Diagn. 2012, 12, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Tamborero, D.; Gonzalez-Perez, A.; Perez-Llamas, C.; Deu-Pons, J.; Kandoth, C.; Reimand, J.; Lawrence, M.S.; Getz, G.; Bader, G.D.; Ding, L.; et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 2013, 3, 2650. [Google Scholar] [CrossRef]
- Genetic Testing for Hereditary Cancer. Available online: https://www.color.com/product/hereditary-cancer-genetic-test (accessed on 23 April 2019).
- Viarisio, D.; Gissmann, L.; Tommasino, M. Human papillomaviruses and carcinogenesis: Well-established and novel models. Curr. Opin. Virol. 2017, 26, 56–62. [Google Scholar] [CrossRef]
- Final Recommendation Statement: Cervical Cancer: Screening—US Preventive Services Task Force. Available online: https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/cervical-cancer-screening2 (accessed on 19 June 2019).
- Saslow, D.; Solomon, D.; Lawson, H.W.; Killackey, M.; Kulasingam, S.; Cain, J.; Garcia, F.A.R.; Moriarty, A.; Waxman, A.; Wilbur, D.; et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology Screening Guidelines for the Prevention and Early Detection of Cervical Cancer. CA Cancer J. Clin. 2012, 62, 147–172. [Google Scholar] [CrossRef]
- Committee on Practice Bulletins—Gynecology. ACOG Practice Bulletin Number 131: Screening for cervical cancer. Obstet. Gynecol. 2012, 120, 1222–1238. [Google Scholar]
- Arbyn, M.; Verdoodt, F.; Snijders, P.J.F.; Verhoef, V.M.J.; Suonio, E.; Dillner, L.; Minozzi, S.; Bellisario, C.; Banzi, R.; Zhao, F.-H.; et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: A meta-analysis. Lancet Oncol. 2014, 15, 172–183. [Google Scholar] [CrossRef]
- Bosgraaf, R.P.; Verhoef, V.M.J.; Massuger, L.F.A.G.; Siebers, A.G.; Bulten, J.; de Kuyper-de Ridder, G.M.; Meijer, C.J.M.; Snijders, P.J.F.; Heideman, D.A.M.; IntHout, J.; et al. Comparative performance of novel self-sampling methods in detecting high-risk human papillomavirus in 30,130 women not attending cervical screening. Int. J. Cancer 2015, 136, 646–655. [Google Scholar] [CrossRef]
- Arrossi, S.; Thouyaret, L.; Herrero, R.; Campanera, A.; Magdaleno, A.; Cuberli, M.; Barletta, P.; Laudi, R.; Orellana, L. Effect of self-collection of HPV DNA offered by community health workers at home visits on uptake of screening for cervical cancer (the EMA study): A population-based cluster-randomised trial. Lancet Glob. Health 2015, 3, e85–e94. [Google Scholar] [CrossRef]
- Bansil, P.; Wittet, S.; Lim, J.L.; Winkler, J.L.; Paul, P.; Jeronimo, J. Acceptability of self-collection sampling for HPV-DNA testing in low-resource settings: A mixed methods approach. BMC Public Health 2014, 14, 1. [Google Scholar] [CrossRef]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA 2006, 295, 2492–2502. [Google Scholar] [CrossRef] [Green Version]
- Goldhirsch, A.; Gelber, R.D.; Piccart-Gebhart, M.J.; de Azambuja, E.; Procter, M.; Suter, T.M.; Jackisch, C.; Cameron, D.; Weber, H.A.; Heinzmann, D.; et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): An open-label, randomised controlled trial. Lancet 2013, 382, 1021–1028. [Google Scholar] [CrossRef]
- Meisel, J.L.; Venur, V.A.; Gnant, M.; Carey, L. Evolution of Targeted Therapy in Breast Cancer: Where Precision Medicine Began. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 78–86. [Google Scholar] [CrossRef]
- Baehner, F.L. The analytical validation of the Oncotype DX Recurrence Score assay. Ecancermedicalscience 2016, 10, 675. [Google Scholar] [CrossRef]
- McVeigh, T.P.; Kerin, M.J. Clinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancer. Breast Cancer Targets Ther. 2017, 9, 393–400. [Google Scholar] [CrossRef]
- Final Update Summary: Breast Cancer: Screening—US Preventive Services Task Force. Available online: https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/breast-cancer-screening (accessed on 23 April 2019).
- Use of Mammography among Women Aged 40 and over, by Selected Characteristics: United States, Selected Years 1987–2015. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjh08a98N7kAhUuy4sBHVo3DSMQFjAAegQIAhAC&url=https%3A%2F%2Fwww.cdc.gov%2Fnchs%2Fdata%2Fhus%2F2015%2F070.pdf&usg=AOvVaw3NDk4rV4PQcd6i2P8uJxqD (accessed on 23 April 2019).
- Schwartz, G.A. Ultrasonic imaging Apparatus and Method for Breast Examination. European Patent Office EP0882426B1, 12 March 2003. [Google Scholar]
- Cragun, J.M. Screening for ovarian cancer. Cancer Control J. Moffitt Cancer Cent. 2011, 18, 16–21. [Google Scholar] [CrossRef]
- Pittaway, D.E.; Fayez, J.A.; Douglas, J.W. Serum CA-125 in the evaluation of benign adnexal cysts. Am. J. Obstet. Gynecol. 1987, 157, 1426–1428. [Google Scholar] [CrossRef]
- Grayson, K.; Gregory, E.; Khan, G.; Guinn, B.-A. Urine Biomarkers for the Early Detection of Ovarian Cancer—Are We There Yet? Biomark. Cancer 2019, 11, 1179299X19830977. [Google Scholar] [CrossRef]
- Kahn, N.; Lavie, O.; Paz, M.; Segev, Y.; Haick, H. Dynamic Nanoparticle-Based Flexible Sensors: Diagnosis of Ovarian Carcinoma from Exhaled Breath. Nano Lett. 2015, 15, 7023–7028. [Google Scholar] [CrossRef]
- Stewart, D.E.; Vigod, S. Postpartum Depression. N. Engl. J. Med. 2016, 375, 2177–2186. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. JPN 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Roehrs, T.A.; Roth, T. Gender Differences in the Efficacy and Safety of Chronic Nightly Zolpidem. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2016, 12, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Waldschmitt, C.; Vogel, F.; Pfuhlmann, B.; Hiemke, C. Duloxetine Serum Concentrations and Clinical Effects. Data from a Therapeutic Drug Monitoring (TDM) Survey. Pharmacopsychiatry 2009, 42, 189–193. [Google Scholar] [CrossRef]
- Dennis, C.-L.; Ross, L.E.; Herxheimer, A. Oestrogens and progestins for preventing and treating postpartum depression. Cochrane Database Syst. Rev. 2008, CD001690. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzpatrick, M.B.; Thakor, A.S. Advances in Precision Health and Emerging Diagnostics for Women. J. Clin. Med. 2019, 8, 1525. https://doi.org/10.3390/jcm8101525
Fitzpatrick MB, Thakor AS. Advances in Precision Health and Emerging Diagnostics for Women. Journal of Clinical Medicine. 2019; 8(10):1525. https://doi.org/10.3390/jcm8101525
Chicago/Turabian StyleFitzpatrick, Megan B., and Avnesh S. Thakor. 2019. "Advances in Precision Health and Emerging Diagnostics for Women" Journal of Clinical Medicine 8, no. 10: 1525. https://doi.org/10.3390/jcm8101525
APA StyleFitzpatrick, M. B., & Thakor, A. S. (2019). Advances in Precision Health and Emerging Diagnostics for Women. Journal of Clinical Medicine, 8(10), 1525. https://doi.org/10.3390/jcm8101525