The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis
Abstract
:1. Introduction
2. Strategy for Systematic Identification of Placental-Derived RNA and miRNA Markers in Maternal Plasma
3. mRNA and Fetal Aneuploidies
4. mRNA and Preeclampsia
5. mRNA and PE Screening
Gene Symbol | First Author | Population N Cases/N Controls | Mean or Median Gestational Age at Blood Test in Cases/Controls (Weeks) | Expression in PE Patients | Stratification for PE Severity |
---|---|---|---|---|---|
CAT | Nakamura, M. [35] | 24/24 | 39/38 | 2 folds lower | Yes, HELLP cases included |
CRH | Ng, E. K. [27] | 12/10 | 37/38 | 10 folds higher | No |
Farina, A. [28] | 17/17 | 36/37 | 9 folds higher (MoM) | Yes | |
Freeman, D. J. [29] | 32/32 | 36/36 | 4–10 folds higher | No | |
Galbiati, S. [30] | 10/12 | 24–36/24–36 | 3.5 folds higher * | No | |
Paiva, P. [33] | 15/15 | 31.1/30.1 | 12 folds higher | Yes (only early PE) | |
Purwosunu, Y. [36] | 43/41 | 39/39 | 3.94 folds higher | Yes, HELLP cases included | |
ERVWE1 | Paiva, P. [33] | 15/15 | 31.1/30.1 | 2 folds higher * | Yes (only early PE) |
GCM1 | Fujito, N. [39] | 10/26 | 35.7/36.1 | 2.43 folds higher | No |
GPx | Nakamura, M. [35] | 24/24 | 39/38 | 4.57 folds lower | Yes, HELLP cases included |
HO-1 | Nakamura, M. [35] | 24/24 | 39/38 | 5.7 folds lower | Yes, HELLP cases included |
HO-2 | Nakamura, M. [35] | 24/24 | 39/38 | 17 folds lower | Yes, HELLP cases included |
hPL | Farina, A. [31] | 6/30 | 33/32 | 1.51 folds lower | No |
Inhibin A | Farina, A. [31] | 6/30 | 33/32 | 1.41 folds higher | No |
KiSS1 | Farina, A. [31] | 6/30 | 33/32 | 2.11 folds higher | No |
PAI-1 | Farina, A. [31] | 6/30 | 33/32 | 1.36 folds lower | No |
Purwosunu, Y. [37] | 43/41 | 39/39 | 2.48 folds higher (MoM) | Yes, HELLP cases included | |
PAPP-A | Kodama, M. [38] | 11/22 | 29/30 | 71 folds higher (MoM) | Yes, early onset (<34 weeks) |
Kodama, M. [38] | 21/42 | 37.8/36.2 | 7 folds higher (MoM) | Yes, late onset (>34 weeks) | |
PLAC1 | Purwosunu, Y. [36] | 43/41 | 39/39 | 3.95 folds higher | Yes, HELLP cases included |
Kodama, M. [38] | 11/22 | 29/30 | 25 folds higher (MoM) | Yes, early onset (<34 weeks) | |
Kodama, M. [38] | 21/42 | 37.8/36.2 | 5 folds higher (MoM) | Yes, late onset (>34 weeks) | |
Fujito, N. [39] | 10/26 | 35.7/36.1 | 8.69 folds higher | No | |
PLAC3 | Paiva, P. [33] | 15/15 | 31.1/30.1 | 11 folds higher | Yes (only early PE) |
PLAC4 | Paiva, P. [33] | 15/15 | 31.1/30.1 | 4 folds higher * | Yes (only early PE) |
PP13 | Shimuzu, H. [34] | 24/22 | 39/38.5 | 3 folds lower | No |
PSG1 | Okazaki, S. [32] | 28/29 | 39/38 | 32.59 folds higher | Yes, HELLP cases included |
SELP | Farina, A. [31] | 6/30 | 33/32 | 2.43 folds higher | No |
Purwosunu, Y. [36] | 43/41 | 39/39 | 8.60 folds higher | Yes, HELLP cases included | |
PTX3 | Galbiati, S. [30] | 10/12 | 24–36/24–36 | 2.50 folds higher * | No |
SOD | Nakamura, M. [35] | 24/24 | 39/38 | 3.2 folds lower | Yes, HELLP cases included |
t(PA) | Purwosunu, Y. [37] | 43/41 | 39/39 | 3.33 folds higher (MoM) | Yes, HELLP cases included |
TPBG | Okazaki, S. [32] | 28/29 | 39/38 | 11.57 folds higher | Yes, HELLP cases included |
VEGF | Farina, A. [31] | 6/30 | 33/32 | 1.72 folds higher | No |
Gene Symbol | First Author | Population | Mean or Median Gestational age at Blood Test in Controls and in Cases (Weeks) | Detection Rate at 5% FPR | Weighted Mean Detection Rate at 5% FPR |
---|---|---|---|---|---|
S-Flt1 | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 43.6 | - |
Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 58.0 | 50.36 | |
Farina, A. [42] | 11/88 | 12/12 | 45.5 | - | |
ENG | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 47.3 | - |
Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 43.5 | 44.67 | |
Farina, A. [42] | 11/88 | 12/12 | 36.4 | - | |
t-(PA) | Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 33.9 | - |
PAI-1 | Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 29.0 | - |
VEGF | Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 29.0 | - |
tgfb1 | Farina, A. [42] | 11/88 | 12/12 | 27.3 | - |
PlGF | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 24.2 | - |
SEL | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 18.2 | 21.2 |
Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 24.2 | - | |
PLAC1 | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 20.0 | 18.9 |
Purwosunu, Y. [41] | 62/310 | 17.3/17.3 | 17.7 | - | |
HO-1 | Sekizawa, A. [40] | 62/310 | 17.3/17.3 | 8.10 | - |
6. mRNA and Intrauterine Growth Restriction (IUGR)
7. Other Clinical Conditions
8. Conclusions
List of Genes and Abbreviations
Name | Official Symbol |
---|---|
catalase | CAT |
chromosome 21 open reading frame 105 | C21orf105 |
corticotropin releasing hormone | CRH |
cyclin-dependent kinase inhibitor 1A | p21 |
disintegrin and metalloproteinase domain-containing protein 12 | ADAM12 |
endogenous retrovirus group W, member 1 | ERVWE1 |
endoglin | ENG |
epidermal growth factor-like protein 7 | EGFL7 |
fms-related tyrosine kinase 1 | sFlt-1 |
glial cells missing | GCM1 |
glutathione peroxidase | GPx |
growth hormone 2 | GH2 |
heme oxygenase 2 | HO-2 |
heme oxygenase-1 | HO-1 |
hypoxia inducible factor 1, alpha subunit | hif1α |
Inhibin A | Inhibin A |
insulin-like growth factor 1 | IGF1 |
Insulin-like growth factor 1 receptor | IGF1R |
insulin-like growth factor 2 | IGF2 |
Insulin-like growth factor binding protein 2 | IGFBP2 |
KiSS-1 metastasis-suppressor | KiSS1 |
pappalysin 2 | PLAC3 |
pentraxin 3, long | PTX3 |
placenta protein 13 | PP13 |
placental growth factor | PlGF |
placentallactogen | CSH1 hPL |
placenta-specific 1 | PLAC1 |
placenta-specific 4 | PLAC4 |
plasminogen activator inhibitor type 1 | PAI-1 |
plasminogen activator, tissue | t(PA) |
pregnancy-associated plasma protein-A | PAPP-A |
pregnancy-specific beta 1 glycoprotein | PSG1 |
salvador homolog 1protein | SAV1 |
selectin P | SELP |
superoxide dismutase | SOD |
tenascin XB | TNXB2 |
transforming growth factor, beta 1 | tgfb1 |
trophoblast glycoprotein | TPBG |
vascular endothelial growth factor A | VEGF |
Conflicts of Interest
References
- Ng, E.K.; Tsui, N.B.; Lau, T.K.; Leung, T.N.; Chiu, R.W.; Panesar, N.S.; Lit, L.C.; Chan, K.W.; Lo, Y.M. mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl. Acad. Sci. USA 2003, 100, 4748–4753. [Google Scholar]
- Lee, R.C.; Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294, 862–864. [Google Scholar]
- Tsui, N.B.; Wong, C.S.; Chow, K.C.; Lo, E.S.; Cheng, Y.K. Investigation of biological factors influencing the placental mRNA profile in maternal plasma. Prenat. Diagn. 2014, 34, 251–258. [Google Scholar]
- Aharon, A.; Brenner, B. Microparticles, thrombosis and cancer. Best Pract. Res. Clin. Haematol. 2009, 22, 61–69. [Google Scholar]
- Krichevsky, A.M.; King, K.S.; Donahue, C.P.; Khrapko, K.; Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003, 9, 1274–1281. [Google Scholar]
- Baehrecke, E.H. miRNAs: Micro managers of programmed cell death. Curr. Biol. 2003, 13, R473–R475. [Google Scholar]
- Chim, S.S.; Shing, T.K.; Hung, E.C.; Leung, T.Y.; Lau, T.K.; Chiu, R.W.; Lo, Y.M. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 2008, 54, 482–490. [Google Scholar]
- Tsui, N.B.; Chim, S.S.; Chiu, R.W.; Lau, T.K.; Ng, E.K.; Leung, T.N.; Tong, Y.K.; Chan, K.C.; Lo, Y.M. Systematic micro-array based identification of placental mRNA in maternal plasma: Towards non-invasive prenatal gene expression profiling. J. Med. Genet. 2004, 41, 461–467. [Google Scholar]
- Ouyang, Y.; Mouillet, J.F.; Coyne, C.B.; Sadovsky, Y. Review: Placenta-specific microRNAs in exosomes—Good things come in nano-packages. Placenta 2013, 15. [Google Scholar] [CrossRef]
- Bentwich, I.; Avniel, A.; Karov, Y.; Aharonov, R.; Gilad, S.; Barad, O.; Barzilai, A.; Einat, P.; Einav, U.; Meiri, E.; et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 2005, 37, 766–770. [Google Scholar]
- Williams, Z.; Ben-Dov, I.Z.; Elias, R.; Mihailovic, A.; Brown, M.; Rosenwaks, Z.; Tuschl, T. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl. Acad. Sci. USA 2013, 110, 4255–4260. [Google Scholar]
- Go, A.T.; Visser, A.; Mulders, M.A.; Twisk, J.W.; Blankenstein, M.A.; van Vugt, J.M.; Oudejans, C.B. C21ORF105, a chromosome 21-encoded mRNA, is not a discriminative marker gene for prediction of Down syndrome in maternal plasma. Prenat. Diagn. 2007, 27, 146–149. [Google Scholar]
- Lo, Y.M.; Tsui, N.B.; Chiu, R.W.; Lau, T.K.; Leung, T.N.; Heung, M.M.; Gerovassili, A.; Jin, Y.; Nicolaides, K.H.; Cantor, C.R.; et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat. Med. 2007, 13, 218–223. [Google Scholar]
- Tsui, N.B.; Akolekar, R.; Chiu, R.W.; Chow, K.C.; Leung, T.Y.; Lau, T.K.; Nicolaides, K.H.; Lo, Y.M. Synergy of total PLAC4 RNA concentration and measurement of the RNA single-nucleotide polymorphism allelic ratio for the noninvasive prenatal detection of trisomy 21. Clin. Chem. 2010, 56, 73–81. [Google Scholar]
- Banzola, I.; Rusterholz, C.; Zannoni, L.; Rizzo, N.; Zhong, X.Y.; Caramelli, E.; Holzgreve, W.; Farina, A.; Hahn, S. PLAC4 and β-HCG mRNA levels are not altered in the maternal circulation of pregnancies with trisomy 21. Prenat. Diagn. 2008, 28, 1262–1267. [Google Scholar]
- Yang, L.; Sun, H.; Chen, D.; Lu, M.; Wang, J.; Xu, F.; Hu, L.; Xiao, J. Application of multiplex SNaPshot assay in measurement of PLAC4 RNA-SNP allelic ratio for noninvasive prenatal detection of trisomy 21. Prenat. Diagn. 2014, 34, 139–144. [Google Scholar]
- Rozovski, U.; Jonish-Grossman, A.; Bar-Shira, A.; Ochshorn, Y.; Goldstein, M.; Yaron, Y. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum. Reprod. 2007, 22, 2538–2545. [Google Scholar]
- Farina, A.; Morano, D.; Arcelli, D.; de Sanctis, P.; Sekizawa, A.; Purwosunu, Y.; Zucchini, C.; Simonazzi, G.; Okai, T.; Rizzo, N. Gene expression in chorionic villous samples at 11 weeks of gestation in women who develop preeclampsia later in pregnancy: Implications for screening 1. Prenat. Diagn. 2009, 29, 1038–1044. [Google Scholar]
- Farina, A.; Zucchini, C.; de Sanctis, P.; Morano, D.; Sekizawa, A.; Purwosunu, Y.; Okai, T.; Rizzo, N. Gene expression in chorionic villous samples at 11 weeks of gestation in women who develop pre-eclampsia later in pregnancy: Implications for screening 2. Prenat. Diagn. 2011, 31, 181–185. [Google Scholar]
- Meng, T.; Chen, H.; Sun, M.; Wang, H.; Zhao, G.; Wang, X. Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. OMICS 2012, 16, 301–311. [Google Scholar]
- Hansson, S.R.; Chen, Y.; Brodszki, J.; Chen, M.; Hernandez-Andrade, E.; Inman, J.M.; Kozhich, O.A.; Larsson, I.; Marsál, K.; Medstrand, P.; et al. Gene expression profiling of human placentas from preeclamptic and normotensive pregnancies. Mol. Hum. Reprod. 2006, 12, 169–179. [Google Scholar]
- Centlow, M.; Wingren, C.; Borrebaeck, C.; Brownstein, M.J.; Hansson, S.R. Differential gene expression analysis of placentas with increased vascular resistance and pre-eclampsia using whole-genome microarrays. J. Pregnancy 2011, 2011, 1–12. [Google Scholar]
- Várkonyi, T.; Nagy, B.; Füle, T.; Tarca, A.L.; Karászi, K.; Schönléber, J.; Hupuczi, P.; Mihalik, N.; Kovalszky, I.; Rigó, J., Jr.; et al. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta 2011, 32, S21–S29. [Google Scholar]
- Sitras, V.; Paulssen, R.H.; Grønaas, H.; Leirvik, J.; Hanssen, T.A.; Vårtun, A.; Acharya, G. Differential placental gene expression in severe preeclampsia. Placenta 2009, 30, 424–433. [Google Scholar]
- Kang, J.H.; Song, H.; Yoon, J.A.; Park, D.Y.; Kim, S.H.; Lee, K.J.; Farina, A.; Cho, Y.K.; Kim, Y.N.; Park, S.W.; et al. Preeclampsia leads to dysregulation of various signaling pathways in placenta. J. Hypertens. 2011, 29, 928–936. [Google Scholar]
- Rajakumar, A.; Chu, T.; Handley, D.E.; Bunce, K.D.; Burke, B.; Hubel, C.A.; Jeyabalan, A.; Peters, D.G. Maternal gene expression profiling during pregnancy and preeclampsia in human peripheral blood mononuclear cells. Placenta 2011, 32, 70–78. [Google Scholar]
- Ng, E.K.; Leung, T.N.; Tsui, N.B.; Lau, T.K.; Panesar, N.S.; Chiu, R.W.; Lo, Y.M. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem. 2003, 49, 727–731. [Google Scholar]
- Farina, A.; Chan, C.W.; Chiu, R.W.; Tsui, N.B.; Carinci, P.; Concu, M.; Banzola, I.; Rizzo, N.; Lo, Y.M. Circulating corticotropin-releasing hormone mRNA in maternal plasma: Relationship with gestational age and severity of preeclampsia. Clin. Chem. 2004, 50, 1851–1854. [Google Scholar]
- Freeman, D.J.; Tham, K.; Brown, E.A.; Rumley, A.; Lowe, G.D.; Greer, I.A. Fetal corticotrophin-releasing hormone mRNA, but not phosphatidylserine-exposing microparticles, in maternal plasma are associated with factor VII activity in pre-eclampsia. J. Thromb. Haemost. 2008, 6, 421–427. [Google Scholar]
- Galbiati, S.; Causarano, V.; Pinzani, P.; Francesca, S.; Orlando, C.; Smid, M.; Pasi, F.; Castiglioni, M.T.; Cavoretto, P.; Rovere-Querini, P.; et al. Evaluation of a panel of circulating DNA, RNA and protein potential markers for pathologies of pregnancy. Clin. Chem. Lab. Med. 2010, 48, 791–794. [Google Scholar]
- Farina, A.; Sekizawa, A.; Purwosunu, Y.; Rizzo, N.; Banzola, I.; Concu, M.; Morano, D.; Giommi, F.; Bevini, M.; Mabrook, M.; et al. Quantitative distribution of a panel of circulating mRNA in preeclampsia versus controls. Prenat. Diagn. 2006, 26, 1115–1120. [Google Scholar]
- Okazaki, S.; Sekizawa, A.; Purwosunu, Y.; Farina, A.; Wibowo, N.; Okai, T. Placenta-derived, cellular messenger RNA expression in the maternal blood of preeclamptic women. Obstet. Gynecol. 2007, 110, 1130–1136. [Google Scholar]
- Paiva, P.; Whitehead, C.; Saglam, B.; Palmer, K.; Tong, S. Measurement of mRNA transcripts of very high placental expression in maternal blood as biomarkers of preeclampsia. J. Clin. Endocrinol. MeTable 2011, 96, E1807–E1815. [Google Scholar]
- Shimizu, H.; Sekizawa, A.; Purwosunu, Y.; Nakamura, M.; Farina, A.; Rizzo, N.; Okai, T. PP13 mRNA expression in the cellular component of maternal blood as a marker for preeclampsia. Prenat. Diagn. 2009, 29, 1231–1236. [Google Scholar]
- Nakamura, M.; Sekizawa, A.; Purwosunu, Y.; Okazaki, S.; Farina, A.; Wibowo, N.; Shimizu, H.; Okai, T. Cellular mRNA expressions of anti-oxidant factors in the blood of preeclamptic women. Prenat. Diagn. 2009, 29, 691–696. [Google Scholar]
- Purwosunu, Y.; Sekizawa, A.; Farina, A.; Wibowo, N.; Okazaki, S.; Nakamura, M.; Samura, O.; Fujito, N.; Okai, T. Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat. Diagn. 2007, 27, 772–777. [Google Scholar]
- Purwosunu, Y.; Sekizawa, A.; Koide, K.; Farina, A.; Wibowo, N.; Wiknjosastro, G.H.; Okazaki, S.; Chiba, H.; Okai, T. Cell-free mRNA concentrations of plasminogen activator inhibitor-1 and tissue-type plasminogen activator are increased in the plasma of pregnant women with preeclampsia. Clin. Chem. 2007, 53, 399–404. [Google Scholar]
- Kodama, M.; Miyoshi, H.; Fujito, N.; Samura, O.; Kudo, Y. Plasma mRNA concentrations of placenta-specific 1 (PLAC1) and pregnancy associated plasma protein A (PAPP-A) are higher in early-onset than late-onset pre-eclampsia. J. Obstet. Gynaecol. Res. 2011, 37, 313–318. [Google Scholar]
- Fujito, N.; Samura, O.; Miharu, N.; Tanigawa, M.; Hyodo, M.; Kudo, Y. Increased plasma mRNAs of placenta-specific 1 (PLAC1) and glial cells-missing 1 (GCM1) in mothers with pre-eclampsia. Hiroshima J. Med. Sci. 2006, 55, 9–15. [Google Scholar]
- Sekizawa, A.; Purwosunu, Y.; Farina, A.; Shimizu, H.; Nakamura, M.; Wibowo, N.; Rizzo, N.; Okai, T. Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15–20 weeks of gestation. BJOG 2010, 117, 557–564. [Google Scholar]
- Purwosunu, Y.; Sekizawa, A.; Okazaki, S.; Farina, A.; Wibowo, N.; Nakamura, M.; Rizzo, N.; Saito, H.; Okai, T. Prediction of preeclampsia by analysis of cell-free messenger RNA in maternal plasma. Am. J. Obstet. Gynecol. 2009, 200. [Google Scholar] [CrossRef]
- Farina, A.; Zucchini, C.; Sekizawa, A.; Purwosunu, Y.; de Sanctis, P.; Santarsiero, G.; Rizzo, N.; Morano, D.; Okai, T. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10–14 weeks. Am. J. Obstet. Gynecol. 2010, 203, e1–e7. [Google Scholar]
- Anton, L.; Olarerin-George, A.O.; Schwartz, N.; Srinivas, S.; Bastek, J.; Hogenesch, J.B.; Elovitz, M.A. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 2013, 183, 1437–1445. [Google Scholar]
- Pang, W.W.; Tsui, M.H.; Sahota, D.; Leung, T.Y.; Lau, T.K.; Lo, Y.M.; Chiu, R.W. A strategy for identifying circulating placental RNA markers for fetal growth assessment. Prenat. Diagn. 2009, 29, 495–504. [Google Scholar]
- Zanello, M.; DeSanctis, P.; Pula, G.; Zucchini, C.; Pittalis, M.C.; Rizzo, N.; Farina, A. Circulating mRNA for epidermal growth factor-like domain 7 (EGFL7) in maternal blood and early intrauterine growth restriction. A preliminary analysis. Prenat. Diagn. 2013, 33, 168–172. [Google Scholar]
- Ashur-Fabian, O.; Yerushalmi, G.M.; Mazaki-Tovi, S.; Steinberg, D.M.; Goldshtein, I.; Yackobovitch-Gavan, M.; Schiff, E.; Amariglio, N.; Rechavi, G. Cell free expression of hif1α and p21 in maternal peripheral blood as a marker for preeclampsia and fetal growth restriction. PLoS One 2012, 7, e37273. [Google Scholar]
- Mouillet, J.F.; Chu, T.; Hubel, C.A.; Nelson, D.M.; Parks, W.T.; Sadovsky, Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta 2010, 31, 781–784. [Google Scholar]
- Whitehead, C.L.; Walker, S.P.; Mendis, S.; Lappas, M.; Tong, S. Quantifying mRNA coding growth genes in the maternal circulation to detect fetal growth restriction. Am. J. Obstet. Gynecol. 2013, 209, e1–e9. [Google Scholar]
- Higashijima, A.; Miura, K.; Mishima, H.; Kinoshita, A.; Jo, O.; Abe, S.; Hasegawa, Y.; Miura, S.; Yamasaki, K.; Yoshida, A.; et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat. Diagn. 2013, 33, 214–222. [Google Scholar]
- Arcelli, D.; Farina, A.; Cappuzzello, C.; Bresin, A.; de Sanctis, P.; Perolo, A.; Prandstraller, D.; Valentini, D.; Zucchini, C.; Priori, S.; et al. Identification of circulating placental mRNA in maternal blood of pregnancies affected with fetal congenital heart diseases at the second trimester of pregnancy: Implications for early molecular screening. Prenat. Diagn. 2010, 30, 229–234. [Google Scholar]
- Yu, Z.; Han, S.; Hu, P.; Zhu, C.; Wang, X.; Qian, L.; Guo, X. Potential role of maternal serum microRNAs as a biomarker for fetal congenital heart defects. Med. Hypotheses 2011, 76, 424–426. [Google Scholar]
- Zhu, S.; Cao, L.; Zhu, J.; Kong, L.; Jin, J.; Qian, L.; Zhu, C.; Hu, X.; Li, M.; Guo, X.; et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin. Chim. Acta 2013, 23, 66–72. [Google Scholar]
- Farina, A.; Rizzo, N.; Concu, M.; Banzola, I.; Sekizawa, A.; Grotti, S.; Carinci, P. Lower maternal PLAC1 mRNA in pregnancies complicated with vaginal bleeding (threatened abortion <20 weeks) and a surviving fetus. Clin. Chem. 2005, 51, 224–227. [Google Scholar]
- Fant, M.; Farina, A.; Nagaraja, R.; Schlessinger, D. PLAC1 (placenta-specific 1): A novel, X-linked gene with roles in reproductive and cancer biology. Prenat. Diagn. 2010, 30, 497–502. [Google Scholar]
- Heung, M.M.; Jin, S.; Tsui, N.B.; Ding, C.; Leung, T.Y.; Lau, T.K.; Chiu, R.W.; Lo, Y.M. Placenta-derived fetal specific mRNA is more readily detectable in maternal plasma than in whole blood. PLoS One 2009, 10, e5858. [Google Scholar]
- Miura, K.; Miura, S.; Yamasaki, K.; Yoshida, A.; Yoshiura, K.; Nakayama, D.; Niikawa, N.; Masuzaki, H. Increased level of cell-free placental mRNA in a subgroup of placenta previa that needs hysterectomy. Prenat. Diagn. 2008, 28, 805–809. [Google Scholar]
- Simonazzi, G.; Farina, A.; Curti, A.; Pilu, G.; Santini, D.; Zucchini, C.; Sekizawa, A.; Rizzo, N. Higher circulating mRNA levels of placental specific genes in a patient with placenta accreta. Prenat. Diagn. 2011, 31, 827–829. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Farina, A. The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis. J. Clin. Med. 2014, 3, 440-452. https://doi.org/10.3390/jcm3020440
Farina A. The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis. Journal of Clinical Medicine. 2014; 3(2):440-452. https://doi.org/10.3390/jcm3020440
Chicago/Turabian StyleFarina, Antonio. 2014. "The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis" Journal of Clinical Medicine 3, no. 2: 440-452. https://doi.org/10.3390/jcm3020440
APA StyleFarina, A. (2014). The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis. Journal of Clinical Medicine, 3(2), 440-452. https://doi.org/10.3390/jcm3020440