Impact of Sacubitril/Valsartan on Cardiac Autonomic Function Assessed Using Physiological Data from Implantable Cardioverter-Defibrillators
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Objective and Population
2.3. Data of Interest and Analysis
- HRV, calculated as the standard deviation of the mean atrial interbeat interval of normal sinus beats in 5 min segments over 24 h [14].
- Mean heart rate over 24 h (24 h-HR).
- Nocturnal heart rate (nHR), defined as the lowest heart rate value during the resting period (1 a.m. to 5 a.m.).
- Frequency of premature ventricular contractions per hour (PVC/h).
- Percentage of cardiac resynchronization therapy pacing (CRT%).
- Device-detected atrial fibrillation burden, calculated as the cumulative time spent in atrial arrhythmias over 24 h, based on a device-detected rate threshold of ≥200 beats per minute.
- Physical activity, measured by an accelerometer sensor and reported as a percentage of 24 h.
2.4. Statistics
3. Results
3.1. Sample Characteristics
3.2. Physiological Parameters
- increased HRV (pT: 78.6 ms [54.2–104.6] vs. 3 mT: 80.8 ms [60.8–108.0]; p = 0.041);
- decreased 24 h-HR (pT: 73.2 bpm [67.3–77.7] vs. 3 mT: 69.9 bpm [64.2–75.7]; p = 0.016);
- decreased nHR (pT: 63.0 bpm [58.1–70.0] vs. 3 mT: 60.4 bpm [56.0–68.6]; p = 0.028).
3.3. Device Electrical Parameters
3.4. Sustained Ventricular Arrhythmias
4. Discussion
- Improvement in HRV and HR: Within 3 months of initiating Sacubitril/Valsartan therapy, we observed a small improvement in HRV and a modest reduction in 24 h-HR and nHR, despite the limited statistical power due to small sample size. These changes may be indicative of a shift toward a greater parasympathetically dominant autonomic profile, a state typically associated with enhanced cardiac stability and a lower risk of arrhythmias. However, as the HRV is an indirect method for sympathetic–parasympathetic balance measure, any inference regarding enhanced vagal activity or its potential stabilizing effect on cardiac electrophysiology remains speculative. Interestingly, these benefits appeared to stabilize after the initial 3 months, with no further significant changes observed over the subsequent 12 months.
- Stability of device electrical parameters: Throughout the study period, device parameters—including R-wave amplitude, ventricular pacing thresholds, and impedance—remained stable. This stability indicates that Sacubitril/Valsartan does not adversely affect the sensing or pacing functions of ICDs or CRT-Ds. This finding reinforces the safety of Sacubitril/Valsartan in patients with these devices.
- Impact on VA: The effect of Sacubitril/Valsartan on ventricular arrhythmic events was more nuanced. In the overall cohort, there was no statistically significant difference in VA incidence between the pre- and post-treatment periods. However, acknowledging that this result is hypothesis-generating and may be influenced by regression to the mean or other unmeasured factors, in the subgroup of patients with a history of arrhythmias before treatment initiation, a significant reduction in recurrent arrhythmic events was observed post-treatment. This suggests that Sacubitril/Valsartan may have a protective impact in high-risk patients with prior arrhythmic events, reducing the burden of recurrent arrhythmias.
4.1. Previous Studies
4.2. Clinical Implications
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AF | Atrial fibrillation |
| CRT-D | Cardiac resynchronization therapy defibrillator |
| CRT% | Percentage of cardiac resynchronization therapy pacing |
| DDAF | Device-detected atrial fibrillation |
| HF | Heart failure |
| HFrEF | HF with reduced ejection fraction |
| HRV | Heart rate variability |
| ICD | Implantable cardioverter-defibrillator |
| nHR | Nocturnal heart rate |
| PVC/h | Frequency of premature ventricular contractions per hour |
| VA | Ventricular arrhythmia |
| 24 h-HR | Mean heart rate over 24 h |
References
- Schocken, D.D.; Benjamin, E.J.; Fonarow, G.C.; Krumholz, H.M.; Levy, D.; Mensah, G.A.; Narula, J.; Shor, E.S.; Young, J.B.; Hong, Y.; et al. Prevention of heart failure: A scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 2008, 117, 2544–2565. [Google Scholar]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Martens, P.; Nuyens, D.; Rivero-Ayerza, M.; Van Herendael, H.; Vercammen, J.; Ceyssens, W.; Luwel, E.; Dupont, M.; Mullens, W. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin. Res. Cardiol. 2019, 108, 1074–1082. [Google Scholar] [CrossRef]
- de Diego, C.; González-Torres, L.; Núñez, J.M.; Inda, R.C.; Martin-Langerwerf, D.A.; Sangio, A.D.; Chochowski, P.; Casasnovas, P.; Blazquéz, J.C.; Almendral, J. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhythm. 2018, 15, 395–402. [Google Scholar] [CrossRef]
- Koev, I.; Yarkoni, M.; Luria, D.; Amir, O.; Biton, Y. Sudden cardiac death prevention in the era of novel heart failure medications. Am. Heart J. Plus Cardiol. Res. Pract. 2023, 27, 100281. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skoularigis, J.; Louridas, G.; Butler, J. The Sympathetic Nervous System in Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1747–1762. [Google Scholar] [CrossRef]
- Minatoguchi, S. Heart failure and its treatment from the perspective of sympathetic nerve activity. J. Cardiol. 2022, 79, 691–697. [Google Scholar] [CrossRef]
- Shen, M.J.; Zipes, D.P. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef]
- Lombardi, F.; Porta, A.; Marzegalli, M.; Favale, S.; Santini, M.; Vincenti, A.; De Rosa, A. Heart rate variability patterns before ventricular tachycardia onset in patients with an implantable cardioverter defibrillator. Am. J. Cardiol. 2000, 86, 959–963. [Google Scholar] [CrossRef]
- Sessa, F.; Anna, V.; Messina, G.; Cibelli, G.; Monda, V.; Marsala, G.; Ruberto, M.; Biondi, A.; Cascio, O.; Bertozzi, G.; et al. Heart rate variability as predictive factor for sudden cardiac death. Aging 2018, 10, 166–177. [Google Scholar] [CrossRef]
- Battipaglia, I.; Barone, L.; Mariani, L.; Infusino, F.; Remoli, R.; Careri, G.; Pinnacchio, G.; Tarzia, P.; Lanza, G.A.; Crea, F. Relationship between cardiac autonomic function and sustained ventricular tachyarrhythmias in patients with an implantable cardioverter defibrillators. Europace 2010, 12, 1725–1731. [Google Scholar] [CrossRef]
- Boehmer, A.A.; Schubert, T.; Rothe, M.; Keim, C.; Wiedenmann, L.; Ruckes, C.; von Stuelpnagel, L.; Theurl, F.; Schreinlechner, M.; Dobre, B.C.; et al. Angiotensin Receptor-Neprilysin Inhibitor Is Associated With Improved Cardiac Autonomic Function in Heart Failure. J. Am. Heart Assoc. 2024, 13, e033538. [Google Scholar] [CrossRef]
- Zanotto, G.; D’Onofrio, A.; Della Bella, P.; Solimene, F.; Pisanò, E.C.; Iacopino, S.; Dondina, C.; Giacopelli, D.; Gargaro, A.; Ricci, R.P. Organizational model and reactions to alerts in remote monitoring of cardiac implantable electronic devices: A survey from the Home Monitoring Expert Alliance project. Clin. Cardiol. 2019, 42, 76–83. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Gerhardt, S.; Ehrlich, J.R. Normalised Heart Rate Variability After Sacubitril/Valsartan. Eur. J. Arrhythm. Electrophysiol. 2019, 5, 60. [Google Scholar] [CrossRef]
- Giallauria, F.; Vitale, G.; Pacileo, M.; Di Lorenzo, A.; Oliviero, A.; Passaro, F.; Calce, R.; Parlato, A.; Testa, C.; D’ambrosio, G.; et al. Sacubitril/valsartan improves autonomic function and cardiopulmonary parameters in patients with heart failure with reduced ejection fraction. J. Clin. Med. 2020, 9, 1897. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, K.; Wang, G.; Jin, W.; Yao, Q.; Zhang, Y. A clinical randomized trial: Effects of early application of sacubitril/valsartan on ventricular remodeling and prognosis in acute myocardial infarction patients. Contemp. Clin. Trials Commun. 2024, 42, 101303. [Google Scholar] [CrossRef]
- Pastor-Pérez, F.J.; García-Alberola, A.; Navarro-Peñalver, M.; Goya-Esteban, R.; Garrido-Bravo, I.P.; Barquero-Pérez, O.; Rojo-Álvarez, J.L.; Pascual-Figal, D.A. Lack of improvement in autonomic cardiac tone after sacubitril/valsartan at lower than target doses. J. Electrocardiol. 2019, 52, 99–100. [Google Scholar] [CrossRef]
- Rohde, L.E.P.; Polanczyk, C.A.; Moraes, R.S.; Ferlin, E.; Ribeiro, J.P. Effect of partial arrhythmia suppression with amiodarone on heart rate variability of patients with congestive heart failure. Am. Heart J. 1998, 136, 31–36. [Google Scholar] [CrossRef]
- Russo, V.; Bottino, R.; Rago, A.; Papa, A.A.; Liccardo, B.; Proietti, R.; Manna, V.; Golino, P.; D’onofrio, A.; Nigro, G. The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator. J. Clin. Med. 2020, 9, 1111. [Google Scholar] [CrossRef]
- Vicent, L.; Méndez-Zurita, F.; Viñolas, X.; Alonso-Martín, C.; Arbòs, C.M.; Pamies, J.; Alcalde, R.O.; Juárez, M.; Bruña, V.; Devesa, C.; et al. Clinical characteristics of patients with sustained ventricular arrhythmias after sacubitril/valsartan initiation. Heart Vessels. 2020, 35, 136–142. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, A.; Marini, M.; Rovaris, G.; Zanotto, G.; Calvi, V.; Iacopino, S.; Biffi, M.; Solimene, F.; Della Bella, P.; Caravati, F.; et al. Prognostic significance of remotely monitored nocturnal heart rate in heart failure patients with reduced ejection fraction. Heart Rhythm. 2023, 20, 233–240. [Google Scholar] [CrossRef] [PubMed]

| Characteristic | Study Cohort (N = 54) |
|---|---|
| Age, years | 68 (63–73) |
| Gender | |
| Male | 46 (85%) |
| Female | 8 (14%) |
| BMI, kg/m2 | 26.8 (23.5–29.4) |
| Device type | |
| ICD VR | 1 (2%) |
| DX ICD | 11 (20%) |
| ICD DR | 15 (28%) |
| CRT-D | 27 (50%) |
| NYHA class | |
| I | 3 (8%) |
| II | 30 (75%) |
| III | 7 (17%) |
| SCD prevention | |
| Primary | 45 (83%) |
| Secondary | 9 (17%) |
| Cardiomyopathy | |
| Non-ischemic | 22 (41%) |
| Ischemic | 32 (59%) |
| LVEF, % | 31.5 (28.0–35.0) |
| QRS duration, ms | 108 (98–160) |
| Comorbidities | |
| Hypertension | 32 (59%) |
| Dyslipidemia | 25 (48%) |
| History of AF | 15 (29%) |
| Diabetes | 10 (19%) |
| COPD | 5 (13%) |
| CKD | 2 (5%) |
| Stroke/TIA | 1 (3%) |
| Medical therapy | |
| ACEI/ARB | 25 (54%) |
| Beta-blockers | 43 (80%) |
| Anticoagulant | 20 (50%) |
| Diuretic | 43 (80%) |
| Amiodarone | 8 (13%) |
| Time of Assessment | |||
|---|---|---|---|
| pT | 3 mT | 12 mT | |
| Physiological parameters | |||
| HRV 1, ms | 78.6 (54.2–104.6) | 80.75 (60.8–108) | 76.4 (61.4–108.0) |
| 24 h-HR, bpm | 73.2 (67.3–77.7) | 69.9 (64.2–75.7) | 71.9 (65.6–79.6) |
| nHR, bpm | 63.0 (58.1–70.0) | 60.4 (56.0–68.6) | 62.6 (60.0–68.7) |
| PVC/h | 2.7 (0–32.7) | 1.9 (0–28.2) | 1.9 (0–26.0) |
| CRT, % | 99.3 (92.3–100) | 99.2 (98.3–100) | 99.2 (98.1–100) |
| DDAF burden, % | 0.14 (0–41.3) | 2.9 (0–44.3) | 1.8 (0–47.7) |
| Patient activity, % | 10.0 (7.0–15.3) | 10.5 (7–13.4) | 10.6 (6–17.1) |
| Device electrical parameters | |||
| R wave amplitude, mV | 14.8 (8.9–19.1) | 15.5 (9.12–19.4) | 13.9 (6.3–19.9) |
| RV pacing threshold @ 0.4 ms, V | 0.7 (0.6–1.0) | 0.7 (0.6–0.9) | 0.7 (0.5–0.9) |
| RV pacing impedance, Ohm | 475 (442–535) | 489 (461–529) | 495 (473–521) |
| Shock impedance, Ohm | 81 (64–86) | 79 (67–86) | 77 (70–86) |
| Time Comparison | Regression Coefficient | Standard Error | p-Value | |
|---|---|---|---|---|
| Physiological parameters | ||||
| HRV | pT–3 mT | 5.58 | 2.73 | 0.041 |
| 3 mT–12 mT | 0.36 | 1.58 | 0.821 | |
| 24 h-HR | pT–3 mT | −2.49 | 1.03 | 0.016 |
| 3 mT–12 mT | 0.04 | 0.51 | 0.932 | |
| nHR | pT–3 mT | −2.28 | 1.03 | 0.028 |
| 3 mT–12 mT | 0.19 | 0.51 | 0.710 | |
| PVC/h | pT–3 mT | 3.08 | 11.0 | 0.779 |
| 3 mT–12 mT | −5.01 | 4.12 | 0.225 | |
| DDAF burden, % | pT–3 mT | −0.72 | 2.49 | 0.773 |
| 3 mT–12 mT | −0.56 | 0.45 | 0.217 | |
| CRT, % | pT–3 mT | 1.91 | 1.04 | 0.066 |
| 3 mT–12 mT | 0.25 | 0.23 | 0.281 | |
| Patient activity, % | pT–3 mT | −0.35 | 0.55 | 0.521 |
| 3 mT–12 mT | −0.39 | 0.50 | 0.429 | |
| Device electrical parameters | ||||
| R wave amplitude | pT–3 mT | 0.03 | 0.30 | 0.927 |
| 3 mT–12 mT | −0.32 | 0.27 | 0.247 | |
| RV pacing threshold | pT–3 mT | 0.01 | 0.00 | 0.561 |
| 3 mT–12 mT | −0.01 | 0.01 | 0.237 | |
| RV pacing impedance | pT–3 mT | 3.82 | 3.83 | 0.319 |
| 3 mT–12 mT | −3.33 | 3.80 | 0.381 | |
| Shock impedance | pT–3 mT | 0.42 | 0.82 | 0.606 |
| 3 mT–12 mT | −0.04 | 0.51 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Barone, L.; Sergi, D.; Maglia, G.; Bontempi, L.; Giaccardi, M.; Baroni, M.; Amellone, C.; Curnis, A.; D’Alterio, G.; Saporito, D.; et al. Impact of Sacubitril/Valsartan on Cardiac Autonomic Function Assessed Using Physiological Data from Implantable Cardioverter-Defibrillators. J. Clin. Med. 2026, 15, 719. https://doi.org/10.3390/jcm15020719
Barone L, Sergi D, Maglia G, Bontempi L, Giaccardi M, Baroni M, Amellone C, Curnis A, D’Alterio G, Saporito D, et al. Impact of Sacubitril/Valsartan on Cardiac Autonomic Function Assessed Using Physiological Data from Implantable Cardioverter-Defibrillators. Journal of Clinical Medicine. 2026; 15(2):719. https://doi.org/10.3390/jcm15020719
Chicago/Turabian StyleBarone, Lucy, Domenico Sergi, Giampiero Maglia, Luca Bontempi, Marzia Giaccardi, Matteo Baroni, Claudia Amellone, Antonio Curnis, Giuliano D’Alterio, Davide Saporito, and et al. 2026. "Impact of Sacubitril/Valsartan on Cardiac Autonomic Function Assessed Using Physiological Data from Implantable Cardioverter-Defibrillators" Journal of Clinical Medicine 15, no. 2: 719. https://doi.org/10.3390/jcm15020719
APA StyleBarone, L., Sergi, D., Maglia, G., Bontempi, L., Giaccardi, M., Baroni, M., Amellone, C., Curnis, A., D’Alterio, G., Saporito, D., Vinciguerra, P., Cipani, S., Mazzone, P., Giammaria, M., Mitacchione, G., Masarone, D., Fabbri, F., Vannelli, A., Baldassarre, I., ... Barillà, F. (2026). Impact of Sacubitril/Valsartan on Cardiac Autonomic Function Assessed Using Physiological Data from Implantable Cardioverter-Defibrillators. Journal of Clinical Medicine, 15(2), 719. https://doi.org/10.3390/jcm15020719

