A Holistic Approach Towards Evaluating Upper Limb Function in Children with Unilateral Cerebral Palsy: A Narrative Review of Clinical Tools and Promising Technologies for Comprehensive Assessment
Abstract
1. Introduction
2. Methods
3. Overview of Clinical Assessments
3.1. Body Function and Structure Level
3.1.1. Motor
3.1.2. Somatosensory Function
3.1.3. Visual Function
3.1.4. Cognitive Function
3.2. Activity Level
3.3. Participation Level
3.4. Quality of Life Level
ICF-CY | Metrics | Clinical Tools | Psychometric Properties | Condition | Age Range |
---|---|---|---|---|---|
Body Function and Structure | Range of motion (=the extent to which a joint can move within its physiological plane of movement) | Universal goniometer [26] | -Inter-Rater Reliability for Wrist and Elbow: ICC = 0.48–0.73 [26]. -Test–Retest Reliability: ICC = 0.81–0.94 [26]. | USCP | ≥5 years |
Muscle tone (=the muscle’s resistance to passive stretch during resting state) | MAS [26] | -Inter-Rater Reliability: ICC = 0.64–0.88 [26]. -Test–Retest Reliability: ICC = 0.57–0.90 [26]. | USCP | ≥5 years | |
Muscle strength (=the ability of a muscle or group of muscles to exert force against resistance) | MRC scale [29] | -Inter-Rater Reliability for Individual UpL Muscle Groups: ICC = 0.49–0.90 [26]. -Test–Retest Reliability: ICC = 0.69–0.96 [26]. | USCP | ≥5 years | |
Grip strength (=specific measure of the force generated by the muscles of the hand and forearm) | Jamar dynamometer [26] | -Inter-Rater Reliability: ICC = 0.95 [26]. -Test–Retest Reliability: ICC = 0.96 [26]. | USCP | ≥5 years | |
Mirror movements (=involuntary movements on one side of the body that mirror voluntary movements occurring on the opposite side) | Woods and Teuber scale [31] | -Inter-Rater Reliability: ICC = 0.90. -Intra-Rater Reliability: ICC = 0.92 [31]. | USCP | ≥5 years | |
Tactile registration (=the ability to detect and respond to touch stimuli on the skin) | Semmes–Weinstein monofilaments | -Reliability in the Affected Hand: ICC = 0.96 [73]. -Reliability in the Unaffected Hand: ICC = 0.90 [73]. -Convergent Validity in the Index Finger: ρ = 0.57–0.65. -Inter-Rater Reliability in the Index Finger: kw = 0.79. -Intra-Rater Reliability in the Index Finger: kw = 0.80 [74]. | USCP TD | 5–17 years | |
Stereognosis (=the ability to recognize and identify objects only by touch) | 12 daily-life objects [26] | -Inter-Rater Reliability: ICC = 0.78 [26]. -Test–Rest Reliability: ICC = 0.86 [26]. | USCP | ≥5 years | |
Two-point discrimination (=the ability to determine the smallest distance at which two separate touch points can be perceived as distinct) | Aesthesiometer [26] | -Inter-Rater Reliability: ICC = 0.92 [26]. -Test–Retest Reliability: ICC = 0.81 [26]. | USCP | ≥5 years | |
Visual-perceptual function (=the ability to interpret, analyze, and give meaning to visual information received from the environment) | TVPS-4; DTVP; MVPT [39] | -TVPS-4 Internal Consistency: Cronbach’s a = 0.94. - DTVP Internal Consistency: Cronbach’s Coefficients ¼ 0.8–0.97 for subtests. 0.93 or above for composites. -MVPT Internal Consistency Cronbach’s a: 4–10 years, 0.69–0.87. 4–11 years, 0.86–0.9. -TVPS Test–Retest Reliability: Whole Test ICC = 0.88; Subtests ICC 0.38–0.77. -DTVP Test–Retest Reliability: r = 0.95. -MVPT Test–Retest Reliability: 4–10 years r = 0.87; >11 years r = 0.92 [39]. | Hemiplegia | ≥4 years | |
Cognitive function (=the overall capacity of an individual to think, reason, learn, and adapt) | WPPSI-IV; WISC-V [41] | -WPPSI-IV Internal Consistency for the Composite Scales: ICC = 0.86 to ≥0.90 -WPPSI-IV Test–Rest Reliability: ICC = 0.84–0.93. -WPPSI-IV Inter-Rater Reliability: ICC = 0.96–0.99 [75]. -WISC-V Criterion Validity: ICC = 0.89. -WISC-V Test–Retest Reliability: ICC = 0.86–0.93 [76]. | TD | 2.64–7.7 years and 6–16 years | |
Executive functions (=a set of advanced cognitive processes enabling goal-directed behavior, planning, decision-making, problem-solving, and self-regulation) | BRIEF; Conners continuous performance test (cpt); Stroop test; digit span; Corsi block-tapping test; trail-making; tests of verbal fluency [49] | -BRIEF: Good stability over time [77]. -Conners cpt (Internal, Consistency): Cronbach’s a= 0.64–0.96. -Conners cpt Test–Retest Reliability: ICC = 0.48–0.79 [50]. -Corsi Block-Tapping Test: Good concurrent validity with the WISC [78]. | USCP TD TD | 8–17 years; mean age: 20.01 years >5 years | |
Activity | Functional use of hands/classification (=effective and purposeful use of one or both hands to perform everyday activities) | MACS; BFMF; HFCS | -MACS Inter-Rater Reliability: ICC = 0.97 [53] -BFMF Construct Validity with the MACS: ρ = 0.89 [54]. | CP | 4–18 years 3–18 years |
Bimanual performance (=the spontaneous use of the affected hand during bimanual tasks) | AHA [79] | -Internal Scale Validity: ICC = 0.98 [80]. -Inter-Rater Reliability: ICC = 0.97 [81]. -Test–Retest Reliability: ICC = 0.99 [81]. | USCP | 18 months –18 years | |
Upper limb movement quality (=the characteristics defining how a movement is performed, focusing on its range of movement, accuracy, dexterity and fluency) | MUUL; MA2 [58] | -MUUL Internal Consistency: PSI up to 0.92. -MUUL Responsiveness to Change: Questionable [58]. -MA2 Test–Retest Reliability: ICC= 0.92–0.98 [82]. | CP | 2.5–15 years | |
Manual dexterity (=the skillful and coordinated use of the hands and fingers to perform precise and complex movements) | BBT [60] | -Responsiveness To Change: More affected hand, effect size = 0.678; Less affected hand, effect size = 0.514 [60]. | USCP | 5–17 years | |
Manual ability (=ability to effectively use both hands to perform everyday activities that require fine skills) | ABILHAND-Kids [62] | -Test–Rest Reliability: ICC = 0.92 [62]. | USCP | 6–17 years | |
Personal perception on upper limb function | CHEQ; CFUS [64,83] | -CHEQ Validity: Effective operational range >90% [84]. -CHEQ Test–Retest Reliability: ICC = 0.88–0.91 [84]. | USCP | CHEQ: 3–18 years CFUS: 5–15 years | |
Participation | Goal-setting, assessment of participation | AMPS; COPM; PEM-CY [67,85,86] | -AMPS Test–Retest Reliability: ICC = 0.86–0.93. -AMPS Intra-Rater Reliability: ICC = 0.96–0.98 [66]. -COPM Test–Retest Reliability: ICC = 0.88–0.89 [87]. -PEM-CY Internal Consistency: Cronbach’s a = 0.59–09.1. -PEM-CY Test–Retest Reliability: ICC = 0.58–0.95 [88]. | CP TD | 5–18 years 5–13 years 5–17 years |
Quality of Life | Life Quality | CP-QoL; CHQ; YQoL-R; PedsQL; TACQOL; SEIQoL [89] | -CP-QoL Internal Consistency: Cronbach’s a = 0.74–0.92 for primary caregivers. Cronbach’s a = 0.80–0.90 for child self-report. -CP-QoL Test–Retest Reliability for caregiver: ICC = 0.76–0.89. -CP-QoL Concurrent Validity with CHQ, KIDSCREEN, and GMFCS [90,91]. | CP | ≥4 years |
4. Overview of Technologies
4.1. Wrist-Worn Sensors
4.2. Markerless Systems
4.3. Sensorized Objects
4.4. Eye-Tracking Systems
ICF | Study Aim | Metrics | Age | P | References | |
---|---|---|---|---|---|---|
Wrist-Worn Sensors | BF | Arm movement | Mean sensitivity, specificity, Youden index | 3.4–13.9 y | CP | [99] |
BF | Arm movement | Duration and intensity of movement | 2–6 y | TD/USCP | [100] | |
BF | Arm movement | Mono-arm use index (MAUI) and bilateral-arm use index (BAUI) | 0–17 y | TD/AMD | [101] | |
BF | Arm movement | NS | 5–12 y | TD/USCP | [102] | |
Markerless Systems | BF/AL | Upper extremity movement assessment | Joint angles, angular trajectories | 12–22.6 y | TD/DCP | [103] |
BF/AL | Full-body motion tracking | Max joint angle, smoothness | 5–29 y | TD | [104,105] | |
BF/AL | Functional assessment of patients with HCP | Joint angle, peak velocity, and peak acceleration | 12–17 y | TD | [106] | |
Sensorized Objects | BF/AL | Grasping patterns and manipulation forces | Trial duration, mean, mean and peak pressure, pressure magnitude, pressure frequency, baseline pressure | 3 d (SD: 1.5) | TD | [107] |
BF | Monitoring infants’ imitation abilities | Grasping pressure | 4–9 m | NS | [108] | |
BF/AL | Assessing spatial cognition | Orientation of the block, vertical and horizontal errors, pre-adjustment errors, insertion time, acceleration amplitude | 12–36 m | TD | [109] | |
BF/AL | Collecting data in a natural play environment to improve the understanding of motor skill development | Maximum toy displacement, time to toy contact, toy contact duration, frequency of toy grasps, mean grasp pressure, mean grasp area | 3–11 m | TD | [110] | |
BF | Detection of neurological disorders | Grasping pressure | 4–9 m | NS | [111] | |
BF | Monitoring and measuring infants’ motor development | Maximum and mean pressure, grasping action duration | >37 w | NS | [112] | |
BF/AL | Detecting developmental delays | Number, time, and speed of movements; mean of shaking | 23–37 m | NS | [113,114] | |
BF/AL | Anticipating the diagnosis of autism spectrum disorders, neurodevelopmental disorders, and social fragilities, monitoring children’s ludic behavior | Position and orientation of the toys, time duration of a gesture, features based on accelerometer data, quality of toy manipulation (QoTM) | 9–15 m | TD | [115] | |
BF/AL | Grip and pinch capability | Range of motion, grip force | 3–13 y | TD/MI | [116] | |
BF | Telemonitoring rehabilitation progress | Grip force | 2–7 y | TD | [117] | |
Eye Tracking | BF | Visual search | Fixation, percentage of gaze points, visual search area | 6–12 y | TD/ADHD/CVI/ Dyslexia | [119] |
BF | Language and cognitive assessment | NS | 3–15 y | ND | [121] | |
BF | Attentional processes | Time in area of interest, press latencies | 6–17 y | TD/ADHD/ND | [123] |
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntyre, S.; Goldsmith, S.; Webb, A.; Ehlinger, V.; Hollung, S.J.; McConnell, K.; Arnaud, C.; Smithers-Sheedy, H.; Oskoui, M.; Khandaker, G.; et al. Global Prevalence of Cerebral Palsy: A Systematic Analysis. Dev. Med. Child. Neurol. 2022, 64, 1494–1506. [Google Scholar] [CrossRef]
- Wimalasundera, N.; Stevenson, V.L. Cerebral Palsy. Pract. Neurol. 2016, 16, 184–194. [Google Scholar] [CrossRef]
- Beckung, E.; Hagberg, G.; Uldall, P.; Cans, C. Probability of Walking in Children with Cerebral Palsy in Europe. Pediatrics 2008, 121, e187–e192. [Google Scholar] [CrossRef]
- Klingels, K.; Demeyere, I.; Jaspers, E.; De Cock, P.; Molenaers, G.; Boyd, R.; Feys, H. Upper Limb Impairments and Their Impact on Activity Measures in Children with Unilateral Cerebral Palsy. Eur. J. Paediatr. Neurol. 2012, 16, 475–484. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Charles, J.; Gordon, A.M. Bimanual Coordination during a Goal-Directed Task in Children with Hemiplegic Cerebral Palsy. Dev. Med. Child. Neurol. 2004, 46, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Mailleux, L.; Klingels, K.; Fiori, S.; Simon-Martinez, C.; Demaerel, P.; Locus, M.; Fosseprez, E.; Boyd, R.N.; Guzzetta, A.; Ortibus, E.; et al. How Does the Interaction of Presumed Timing, Location and Extent of the Underlying Brain Lesion Relate to Upper Limb Function in Children with Unilateral Cerebral Palsy? Eur. J. Paediatr. Neurol. 2017, 21, 763–772. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Simon-Martinez, C.; Jaspers, E.; Mailleux, L.; Ortibus, E.; Klingels, K.; Wenderoth, N.; Feys, H. Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of Upper Limb Motor and Sensory Function. Neural Plast. 2018, 2018, 2671613. [Google Scholar] [CrossRef] [PubMed]
- Guzzetta, A.; Fazzi, B.; Mercuri, E.; Bertuccelli, B.; Canapicchi, R.; van Hof-van Duin, J.; Cioni, G. Visual Function in Children with Hemiplegia in the First Years of Life. Dev. Med. Child. Neurol. 2001, 43, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Abgottspon, S.; Steiner, L.; Slavova, N.; Steinlin, M.; Grunt, S.; Everts, R. Relationship between Motor Abilities and Executive Functions in Patients after Pediatric Stroke. Appl. Neuropsychol. Child. 2022, 11, 618–628. [Google Scholar] [CrossRef]
- Rose, S.; Guzzetta, A.; Pannek, K.; Boyd, R. MRI Structural Connectivity, Disruption of Primary Sensorimotor Pathways, and Hand Function in Cerebral Palsy. Brain Connect. 2011, 1, 309–316. [Google Scholar] [CrossRef]
- Hoon, A.H., Jr.; Stashinko, E.; Nagae, L.M.; Lin, D.D.; Keller, J.; Bastian, A.; Campbell, M.L.; Levey, E.; Mori, S.; Johnston, M.V. Sensory and Motor Deficits in Children with Cerebral Palsy Born Preterm Correlate with Diffusion Tensor Imaging Abnormalities in Thalamocortical Pathways. Dev. Med. Child. Neurol. 2009, 51, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.P.; Pearse, J.; Kelly, S.; Wisher, V.; Kisler, J. Early Intervention to Improve Hand Function in Hemiplegic Cerebral Palsy. Front. Neurol. 2015, 5, 281. [Google Scholar] [CrossRef] [PubMed]
- Auld, M.L.; Boyd, R.N.; Moseley, G.L.; Ware, R.S.; Johnston, L.M. Impact of Tactile Dysfunction on Upper-Limb Motor Performance in Children with Unilateral Cerebral Palsy. Arch. Phys. Med. Rehabil. 2012, 93, 696–702. [Google Scholar] [CrossRef]
- Bleyenheuft, Y.; Gordon, A.M. Precision Grip Control, Sensory Impairments and Their Interactions in Children with Hemiplegic Cerebral Palsy: A Systematic Review. Res. Dev. Disabil. 2013, 34, 3014–3028. [Google Scholar] [CrossRef]
- James, S.; Ziviani, J.; Ware, R.S.; Boyd, R.N. Relationships between Activities of Daily Living, Upper Limb Function, and Visual Perception in Children and Adolescents with Unilateral Cerebral Palsy. Dev. Med. Child. Neurol. 2015, 57, 852–857. [Google Scholar] [CrossRef]
- Kalkantzi, A.; Kleeren, L.; Baeyens, D.; Decraene, L.; Crotti, M.; Klingels, K.; Van Campenhout, A.; Verheyden, G.; Ortibus, E.; Feys, H.; et al. Daily-life Executive Functions and Bimanual Performance in Children with Unilateral Cerebral Palsy. Dev. Med. Child. Neurol. 2025, 67, 1290–1300. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health: Children & Youth Version: ICF-CY; First; World Health Organization: Geneva, Switzerland, 2007.
- Bland, M.D.; Sturmoski, A.; Whitson, M.; Harris, H.; Connor, L.T.; Fucetola, R.; Edmiaston, J.; Huskey, T.; Carter, A.; Kramper, M.; et al. Clinician Adherence to a Standardized Assessment Battery Across Settings and Disciplines in a Poststroke Rehabilitation Population. Arch. Phys. Med. Rehabil. 2013, 94, 1048–1053.e1. [Google Scholar] [CrossRef]
- Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Newman, C.J.; Aminian, K.; Armand, S. Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Sci. Rep. 2020, 10, 2091. [Google Scholar] [CrossRef]
- van der Lee, J.H.; Beckerman, H.; Knol, D.L.; de Vet, H.C.W.; Bouter, L.M. Clinimetric Properties of the Motor Activity Log for the Assessment of Arm Use in Hemiparetic Patients. Stroke 2004, 35, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Rozaire, J.; Paquin, C.; Henry, L.; Agopyan, H.; Bard-Pondarré, R.; Naaim, A.; Duprey, S.; Chaleat-Valayer, E. A Systematic Review of Instrumented Assessments for Upper Limb Function in Cerebral Palsy: Current Limitations and Future Directions. J. Neuroeng. Rehabil. 2024, 21, 56. [Google Scholar] [CrossRef]
- Cacioppo, M.; Loos, A.; Lempereur, M.; Brochard, S. Bimanual Movements in Children with Cerebral Palsy: A Systematic Review of Instrumented Assessments. J. Neuroeng. Rehabil. 2023, 20, 26. [Google Scholar] [CrossRef]
- Boroumand, S.; Pashmdarfard, M.; Hamedi, D.; Mehraban, A.H. Clinical Tools for Assessing One-Handed Skills in Children with Cerebral Palsy: An Umbrella Review. Occup. Ther. Int. 2025, 2025, 8847527. [Google Scholar] [CrossRef]
- Mia, M.R.; Ahamed, S.I.; Fial, A.; Nemanich, S. A Scoping Review on Mobile Health Technology for Assessment and Intervention of Upper Limb Motor Function in Children with Motor Impairments. Games Health J. 2024, 13, 135–148. [Google Scholar] [CrossRef]
- Mokkink, L.B.; Prinsen, C.A.C.; Bouter, L.M.; Vet, H.C.W.d.; Terwee, C.B. The COnsensus-Based Standards for the Selection of Health Measurement INstruments (COSMIN) and How to Select an Outcome Measurement Instrument. Braz. J. Phys. Ther. 2016, 20, 105–113. [Google Scholar] [CrossRef]
- Klingels, K.; De Cock, P.; Molenaers, G.; Desloovere, K.; Huenaerts, C.; Jaspers, E.; Feys, H. Upper Limb Motor and Sensory Impairments in Children with Hemiplegic Cerebral Palsy. Can They Be Measured Reliably? Disabil. Rehabil. 2010, 32, 409–416. [Google Scholar] [CrossRef]
- Fedrizzi, E.; Pagliano, E.; Andreucci, E.; Oleari, G. Hand Function in Children with Hemiplegic Cerebral Palsy: Prospective Follow-up and Functional Outcome in Adolescence. Dev. Med. Child. Neurol. 2003, 45, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Harb, A.; Margetis, K.; Kishner, S. Modified Ashworth Scale; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Nourizadeh, M.; Shadgan, B.; Abbasidezfouli, S.; Juricic, M.; Mulpuri, K. Methods of Muscle Spasticity Assessment in Children with Cerebral Palsy: A Scoping Review. J. Orthop. Surg. Res. 2024, 19, 401. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, K.J.F.M.; Rameckers, E.A.A.; Smeets, R.J.E.M.; Janssen-Potten, Y.J.M. Upper Extremity Strength Measurement for Children with Cerebral Palsy: A Systematic Review of Available Instruments. Phys. Ther. 2014, 94, 609–622. [Google Scholar] [CrossRef]
- Magne, V.A.; Adde, L.; Hoare, B.; Klingels, K.; Simon-Martinez, C.; Mailleux, L.; Lydersen, S.; Elvrum, A.G. Assessment of Mirror Movements in Children and Adolescents with Unilateral Cerebral Palsy: Reliability of the Woods and Teuber Scale. Dev. Med. Child. Neurol. 2021, 63, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Bumin, G.; Kavak, S.T. An Investigation of the Factors Affecting Handwriting Performance in Children with Hemiplegic Cerebral Palsy. Disabil. Rehabil. 2008, 30, 1374–1385. [Google Scholar] [CrossRef]
- Klingels, K.; Jaspers, E.; Van de Winckel, A.; De Cock, P.; Molenaers, G.; Feys, H. A Systematic Review of Arm Activity Measures for Children with Hemiplegic Cerebral Palsy. Clin. Rehabil. 2010, 24, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Auld, M.L.; Boyd, R.N.; Moseley, G.L.; Johnston, L.M. Tactile Assessment in Children with Cerebral Palsy: A Clinimetric Review. Phys. Occup. Ther. Pediatr. 2011, 31, 413–439. [Google Scholar] [CrossRef]
- Fazzi, E.; Signorini, S.G.; LA Piana, R.; Bertone, C.; Misefari, W.; Galli, J.; Balottin, U.; Bianchi, P.E. Neuro-ophthalmological Disorders in Cerebral Palsy: Ophthalmological, Oculomotor, and Visual Aspects. Dev. Med. Child. Neurol. 2012, 54, 730–736. [Google Scholar] [CrossRef]
- Jacobson, L.; Rydberg, A.; Eliasson, A.; Kits, A.; Flodmark, O. Visual Field Function in School-aged Children with Spastic Unilateral Cerebral Palsy Related to Different Patterns of Brain Damage. Dev. Med. Child. Neurol. 2010, 52, e184–e187. [Google Scholar] [CrossRef]
- Crotti, M.; Ortibus, E.; Mailleux, L.; Decraene, L.; Kleeren, L.; Itzhak, N. Ben Visual, Perceptual Functions, and Functional Vision in Children with Unilateral Cerebral Palsy Compared to Children with Neurotypical Development. Dev. Med. Child. Neurol. 2024, 66, 1084–1095. [Google Scholar] [CrossRef]
- Crotti, M.; Ortibus, E.; Ben Itzhak, N.; Kleeren, L.; Decraene, L.; Leenaerts, N.; Feys, H.; Mailleux, L. The Relation between Visual Functions, Functional Vision, and Bimanual Function in Children with Unilateral Cerebral Palsy. Res. Dev. Disabil. 2024, 152, 104792. [Google Scholar] [CrossRef]
- Auld, M.; Boyd, R.; Moseley, G.L.; Johnston, L. Seeing the Gaps: A Systematic Review of Visual Perception Tools for Children with Hemiplegia. Disabil. Rehabil. 2011, 33, 1854–1865. [Google Scholar] [CrossRef]
- Stadskleiv, K. Cognitive Functioning in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2020, 62, 283–289. [Google Scholar] [CrossRef]
- Stadskleiv, K.; Jahnsen, R.; Andersen, G.L.; von Tetzchner, S. Executive Functioning in Children Aged 6–18 Years with Cerebral Palsy. J. Dev. Phys. Disabil. 2017, 29, 663–681. [Google Scholar] [CrossRef]
- Bodimeade, H.L.; Whittingham, K.; Lloyd, O.; Boyd, R.N. Executive Function in Children and Adolescents with Unilateral Cerebral Palsy. Dev. Med. Child. Neurol. 2013, 55, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, L.; Flachs, E.M.; Uldall, P. Attentional and Executive Impairments in Children with Spastic Cerebral Palsy. Dev. Med. Child. Neurol. 2010, 52, e42–e47. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.P.; Miyake, A. Unity and Diversity of Executive Functions: Individual Differences as a Window on Cognitive Structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2012. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 5th ed.; Pearson Clinical Assessment: Chicago, IL, USA, 2014. [Google Scholar]
- Canivez, G.L.; McGill, R.J.; Dombrowski, S.C.; Watkins, M.W.; Pritchard, A.E.; Jacobson, L.A. Construct Validity of the WISC-V in Clinical Cases: Exploratory and Confirmatory Factor Analyses of the 10 Primary Subtests. Assessment 2020, 27, 274–296. [Google Scholar] [CrossRef] [PubMed]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. TEST REVIEW Behavior Rating Inventory of Executive Function. Child Neuropsychol. 2000, 6, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Lopes, S.; Magalhães, P.; Sampaio, A.; Chaleta, E.; Rosário, P. How Executive Functions Are Evaluated in Children and Adolescents with Cerebral Palsy? A Systematic Review. Front. Psychol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Shaked, D.; Faulkner, L.M.D.; Tolle, K.; Wendell, C.R.; Waldstein, S.R.; Spencer, R.J. Reliability and Validity of the Conners’ Continuous Performance Test. Appl. Neuropsychol. Adult 2020, 27, 478–487. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Chagas, P.S.C.; Magalhães, E.D.D.; Sousa Junior, R.R.; Romeros, A.C.S.F.; Palisano, R.J.; Leite, H.R.; Rosenbaum, P. Development of Children, Adolescents, and Young Adults with Cerebral Palsy According to the ICF: A Scoping Review. Dev. Med. Child. Neurol. 2023, 65, 745–753. [Google Scholar] [CrossRef]
- Eliasson, A.C.; Krumlinde-Sundholm, L.; Rösblad, B.; Beckung, E.; Arner, M.; Öhrvall, A.M.; Rosenbaum, P. The Manual Ability Classification System (MACS) for Children with Cerebral Palsy: Scale Development and Evidence of Validity and Reliability. Dev. Med. Child. Neurol. 2006, 48, 549–554. [Google Scholar] [CrossRef]
- Elvrum, A.-K.G.; Andersen, G.L.; Himmelmann, K.; Beckung, E.; Öhrvall, A.-M.; Lydersen, S.; Vik, T. Bimanual Fine Motor Function (BFMF) Classification in Children with Cerebral Palsy: Aspects of Construct and Content Validity. Phys. Occup. Ther. Pediatr. 2016, 36, 1–16. [Google Scholar] [CrossRef]
- House, J.H.; Gwathmey, F.W.; Fidler, M.O. A Dynamic Approach to the Thumb-in Palm Deformity in Cerebral Palsy. J. Bone Jt. Surg. Am. 1981, 63, 216–225. [Google Scholar] [CrossRef]
- Geerdink, Y.; Lindeboom, R.; de Wolf, S.; Steenbergen, B.; Geurts, A.C.H.; Aarts, P. Assessment of Upper Limb Capacity in Children with Unilateral Cerebral Palsy: Construct Validity of a Rasch-reduced Modified House Classification. Dev. Med. Child. Neurol. 2014, 56, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Krumlinde-Sundholm, L. Development of the Assisting Hand Assessment: A Rasch-built measure intended for children with unilateral upper limb impairments. Scand. J. Occup. Ther. 2003, 10, 16–26. [Google Scholar] [CrossRef]
- Randall, M.; Imms, C.; Carey, L.M.; Pallant, J.F. Rasch Analysis of The Melbourne Assessment of Unilateral Upper Limb Function. Dev. Med. Child. Neurol. 2014, 56, 665–672. [Google Scholar] [CrossRef]
- Gerber, C.N.; Plebani, A.; Labruyère, R. Translation, Reliability, and Clinical Utility of the Melbourne Assessment 2. Disabil. Rehabil. 2019, 41, 226–234. [Google Scholar] [CrossRef]
- Araneda, R.; Ebner-Karestinos, D.; Paradis, J.; Saussez, G.; Friel, K.M.; Gordon, A.M.; Bleyenheuft, Y. Reliability and Responsiveness of the Jebsen-Taylor Test of Hand Function and the Box and Block Test for Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2019, 61, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Pinkowski, C.; van Wijck, F.; Kim, I.-H.; di Bella, P.; Johnson, G. Reliability and Validity of Arm Function Assessment with Standardized Guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A Multicentre Study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef]
- Arnould, C.; Penta, M.; Renders, A.; Thonnard, J.-L. ABILHAND-Kids. Neurology 2004, 63, 1045–1052. [Google Scholar] [CrossRef]
- Pearse, J.; Basu, A.P. ABILHAND-Kids Questionnaire: Responsive to Change or Room for Change? Dev. Med. Child. Neurol. 2017, 59, 457. [Google Scholar] [CrossRef] [PubMed]
- Charles, J.R.; Wolf, S.L.; Schneider, J.A.; Gordon, A.M. Efficacy of a Child-Friendly Form of Constraint-Induced Movement Therapy in Hemiplegic Cerebral Palsy: A Randomized Control Trial. Dev. Med. Child. Neurol. 2006, 48, 635. [Google Scholar] [CrossRef] [PubMed]
- Paulson, A.; Vargus-Adams, J. Overview of Four Functional Classification Systems Commonly Used in Cerebral Palsy. Children 2017, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Ziviani, J.; Boyd, R. A Systematic Review of Activities of Daily Living Measures for Children and Adolescents with Cerebral Palsy. Dev. Med. Child. Neurol. 2014, 56, 233–244. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Ziviani, J.; Ware, R.S.; Boyd, R.N. Test–Retest Reproducibility of the Assessment of Motor and Process Skills in Children with Unilateral Cerebral Palsy. Phys. Occup. Ther. Pediatr. 2016, 36, 144–154. [Google Scholar] [CrossRef]
- Coster, W.; Law, M.; Bedell, G.; Khetani, M.; Cousins, M.; Teplicky, R. Development of the Participation and Environment Measure for Children and Youth: Conceptual Basis. Disabil. Rehabil. 2012, 34, 238–246. [Google Scholar] [CrossRef]
- Eiser, C.; Morse, R. Quality-of-Life Measures in Chronic Diseases of Childhood. Health Technol. Assess. 2001, 5, 1–157. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.B. Cleary, P.D. Linking Clinical Variables with Health-Related Quality of Life. A Conceptual Model of Patient Outcomes. JAMA: J. Am. Med. Assoc. 1995, 273, 59–65. [Google Scholar] [CrossRef]
- Makris, T.; Dorstyn, D.; Crettenden, A. Quality of Life in Children and Adolescents with Cerebral Palsy: A Systematic Review with Meta-Analysis. Disabil. Rehabil. 2021, 43, 299–308. [Google Scholar] [CrossRef]
- Mpundu-Kaambwa, C.; Chen, G.; Huynh, E.; Russo, R.; Ratcliffe, J. A Review of Preference-Based Measures for the Assessment of Quality of Life in Children and Adolescents with Cerebral Palsy. Qual. Life Res. 2018, 27, 1781–1799. [Google Scholar] [CrossRef]
- Auld, M.L.; Ware, R.S.; Boyd, R.N.; Moseley, G.L.; Johnston, L.M. Reproducibility of Tactile Assessments for Children with Unilateral Cerebral Palsy. Phys. Occup. Ther. Pediatr. 2012, 32, 151–166. [Google Scholar] [CrossRef]
- Dua, K.; Lancaster, T.P.; Abzug, J.M. Age-Dependent Reliability of Semmes-Weinstein and 2-Point Discrimination Tests in Children. J. Pediatr. Orthop. 2019, 39, 98–103. [Google Scholar] [CrossRef]
- Syeda, M.M.; Climie, E.A. Test Review: Wechsler Preschool and Primary Scale of Intelligence–Fourth Edition. J. Psychoeduc. Assess. 2014, 32, 265–272. [Google Scholar] [CrossRef]
- Andrikopoulos, V. Exploring the Validity and Reliability of the WISC-IV: A Review of the Literature. J. Soc. Sci. Stud. 2021, 8, 101. [Google Scholar] [CrossRef]
- Piovesana, A.M.; Ross, S.; Whittingham, K.; Ware, R.S.; Boyd, R.N. Stability of Executive Functioning Measures in 8–17-Year-Old Children with Unilateral Cerebral Palsy. Clin. Neuropsychol. 2015, 29, 133–149. [Google Scholar] [CrossRef]
- Orsini, A. Corsi’s Block-Tapping Test: Standardization and Concurrent Validity with WISC—R for Children Aged 11 to 16. Percept. Mot. Ski. 1994, 79, 1547–1554. [Google Scholar] [CrossRef]
- Krumlinde-Sundholm, L.; Holmefur, M.; Kottorp, A.; Eliasson, A.C. The Assisting Hand Assessment: Current evidence of validity, reliability, and responsiveness to change. Dev. Med. Child Neurol. 2007, 49, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Holmefur, M.M.; Krumlinde-Sundholm, L. Psychometric Properties of a Revised Version of the Assisting Hand Assessment (Kids-AHA 5.0). Dev. Med. Child. Neurol. 2016, 58, 618–624. [Google Scholar] [CrossRef]
- Louwers, A.; Beelen, A.; Holmefur, M.; Krumlinde-Sundholm, L. Development of the Assisting Hand Assessment for Adolescents (Ad-AHA) and Validation of the AHA from 18 Months to 18 Years. Dev. Med. Child. Neurol. 2016, 58, 1303–1309. [Google Scholar] [CrossRef]
- Wang, T.-N.; Liang, K.-J.; Liu, Y.-C.; Shieh, J.-Y.; Chen, H.-L. Psychometric and Clinimetric Properties of the Melbourne Assessment 2 in Children with Cerebral Palsy. Arch. Phys. Med. Rehabil. 2017, 98, 1836–1841. [Google Scholar] [CrossRef]
- Sköld, A.; Hermansson, L.N.; Krumlinde-Sundholm, L.; Eliasson, A.C. Development and Evidence of Validity for the Children’s Hand-Use Experience Questionnaire (CHEQ). Dev. Med. Child. Neurol. 2011, 53, 436–442. [Google Scholar] [CrossRef]
- Amer, A.; Eliasson, A.; Peny-Dahlstrand, M.; Hermansson, L. Validity and Test–Retest Reliability of Children’s Hand-use Experience Questionnaire in Children with Unilateral Cerebral Palsy. Dev. Med. Child. Neurol. 2016, 58, 743–749. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Ziviani, J.; Boyd, R.N. Characteristics Associated with Physical Activity among Independently Ambulant Children and Adolescents with Unilateral Cerebral Palsy. Dev. Med. Child. Neurol. 2015, 57, 167–174. [Google Scholar] [CrossRef]
- Kang, M.; Smith, E.; Goldsmith, C.H.; Switzer, L.; Rosenbaum, P.; Wright, F.V.; Fehlings, D. Documenting Change with the Canadian Occupational Performance Measure for Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2020, 62, 1154–1160. [Google Scholar] [CrossRef]
- Sakzewski, L.; Boyd, R.; Ziviani, J. Clinimetric Properties of Participation Measures for 5- to 13-year-old Children with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2007, 49, 232–240. [Google Scholar] [CrossRef]
- Coster, W.; Bedell, G.; Law, M.; Khetani, M.A.; Teplicky, R.; Liljenquist, K.; Gleason, K.; Kao, Y.-C. Psychometric Evaluation of the Participation and Environment Measure for Children and Youth. Dev. Med. Child. Neurol. 2011, 53, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.; Shelly, A.; Waters, E.; Davern, M. Measuring the Quality of Life of Children with Cerebral Palsy: Comparing the Conceptual Differences and Psychometric Properties of Three Instruments. Dev. Med. Child. Neurol. 2010, 52, 174–180. [Google Scholar] [CrossRef]
- Carlon, S.; Shields, N.; Yong, K.; Gilmore, R.; Sakzewski, L.; Boyd, R. A Systematic Review of the Psychometric Properties of Quality of Life Measures for School Aged Children with Cerebral Palsy. BMC Pediatr. 2010, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Waters, E.; Davis, E.; Mackinnon, A.; Boyd, R.; Graham, H.K.; Kai Lo, S.; Wolfe, R.; Stevenson, R.; Bjornson, K.; Blair, E.; et al. Psychometric Properties of the Quality of Life Questionnaire for Children with CP. Dev. Med. Child. Neurol. 2007, 49, 49–55. [Google Scholar] [CrossRef]
- Braito, I.; Maselli, M.; Sgandurra, G.; Inguaggiato, E.; Beani, E.; Cecchi, F.; Cioni, G.; Boyd, R. Assessment of Upper Limb Use in Children with Typical Development and Neurodevelopmental Disorders by Inertial Sensors: A Systematic Review. J. Neuroeng. Rehabil. 2018, 15, 94. [Google Scholar] [CrossRef]
- Cervantes, C.M.; Porretta, D.L. Physical Activity Measurement Among Individuals with Disabilities: A Literature Review. Adapt. Phys. Act. Q. 2010, 27, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive Wearable Systems for Upper Body Rehabilitation: A Systematic Review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef]
- Dawe, J.; Yang, J.F.; Fehlings, D.; Likitlersuang, J.; Rumney, P.; Zariffa, J.; Musselman, K.E. Validating Accelerometry as a Measure of Arm Movement for Children with Hemiplegic Cerebral Palsy. Phys. Ther. 2019, 99, 721–729. [Google Scholar] [CrossRef]
- Sokal, B.; Uswatte, G.; Vogtle, L.; Byrom, E.; Barman, J. Everyday Movement and Use of the Arms: Relationship in Children with Hemiparesis Differs from Adults. J. Pediatr. Rehabil. Med. 2015, 8, 197–206. [Google Scholar] [CrossRef]
- Hoyt, C.R.; Van, A.N.; Ortega, M.; Koller, J.M.; Everett, E.A.; Nguyen, A.L.; Lang, C.E.; Schlaggar, B.L.; Dosenbach, N.U.F. Detection of Pediatric Upper Extremity Motor Activity and Deficits with Accelerometry. JAMA Netw. Open 2019, 2, e192970. [Google Scholar] [CrossRef]
- Srinivasan, S.; Amonkar, N.; Kumavor, P.D.; Bubela, D. Measuring Upper Extremity Activity of Children with Unilateral Cerebral Palsy Using Wrist-Worn Accelerometers: A Pilot Study. Am. J. Occup. Ther. 2024, 78, 7802180050. [Google Scholar] [CrossRef]
- Francisco-Martínez, C.; Prado-Olivarez, J.; Padilla-Medina, J.A.; Díaz-Carmona, J.; Pérez-Pinal, F.J.; Barranco-Gutiérrez, A.I.; Martínez-Nolasco, J.J. Upper Limb Movement Measurement Systems for Cerebral Palsy: A Systematic Literature Review. Sensors 2021, 21, 7884. [Google Scholar] [CrossRef]
- Walmsley, C.P.; Williams, S.A.; Grisbrook, T.; Elliott, C.; Imms, C.; Campbell, A. Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review. Sports Med. Open 2018, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Zöller, M.; Farid, M.S.; Grzegorzek, M. Marker-Based Movement Analysis of Human Body Parts in Therapeutic Procedure. Sensors 2020, 20, 3312. [Google Scholar] [CrossRef]
- Metcalf, C.D.; Robinson, R.; Malpass, A.J.; Bogle, T.P.; Dell, T.A.; Harris, C.; Demain, S.H. Markerless Motion Capture and Measurement of Hand Kinematics: Validation and Application to Home-Based Upper Limb Rehabilitation. IEEE Trans. Biomed. Eng. 2013, 60, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Vanmechelen, I.; Van Wonterghem, E.; Aerts, J.-M.; Hallez, H.; Desloovere, K.; Van de Walle, P.; Buizer, A.I.; Monbaliu, E.; Haberfehlner, H. Markerless Motion Analysis to Assess Reaching-Sideways in Individuals with Dyskinetic Cerebral Palsy: A Validity Study. J. Biomech. 2024, 173, 112233. [Google Scholar] [CrossRef]
- Hesse, N.; Baumgartner, S.; Gut, A.; van Hedel, H.J.A. Concurrent Validity of a Custom Method for Markerless 3D Full-Body Motion Tracking of Children and Young Adults Based on a Single RGB-D Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- Hesse, N.; Baumgartner, S.; Gut, A.; Van Hedel, H.J.A. Concurrent Validity of Motion Parameters Measured With an RGB-D Camera-Based Markerless 3D Motion Tracking Method in Children and Young Adults. IEEE J. Transl. Eng. Health Med. 2024, 12, 580–588. [Google Scholar] [CrossRef]
- Rammer, J.R.; Krzak, J.J.; Riedel, S.A.; Harris, G.F. Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect-Based Markerless Motion Analysis System. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: New York, NY, USA, 2014; pp. 2525–2528. [Google Scholar]
- Molina, M.; Jouen, F. Modulation of the Palmar Grasp Behavior in Neonates According to Texture Property. Infant. Behav. Dev. 1998, 21, 659–666. [Google Scholar] [CrossRef]
- Baldoli, I.; Cecchi, F.; Guzzetta, A.; Laschi, C. Sensorized Graspable Devices for the Study of Motor Imitation in Infants. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: New York, NY, USA, 2015; pp. 7394–7397. [Google Scholar]
- Campolo, D.; Taffoni, F.; Formica, D.; Iverson, J.; Sparaci, L.; Keller, F.; Guglielmelli, E. Embedding Inertial-Magnetic Sensors in Everyday Objects: Assessing Spatial Cognition in Children. J. Integr. Neurosci. 2012, 11, 103–116. [Google Scholar] [CrossRef]
- Goyal, V.; Torres, W.; Rai, R.; Shofer, F.; Bogen, D.; Bryant, P.; Prosser, L.; Johnson, M.J. Quantifying Infant Physical Interactions Using Sensorized Toys in a Natural Play Environment. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; IEEE: New York, NY, USA, 2017; pp. 882–887. [Google Scholar]
- Cecchi, F.; Serio, S.M.; Del Maestro, M.; Laschi, C.; Sgandurra, G.; Cioni, G.; Dario, P. Design and Development of “Biomechatronic Gym” for Early Detection of Neurological Disorders in Infants. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: New York, NY, USA, 2010; pp. 3414–3417. [Google Scholar]
- Serio, S.M.; Cecchi, F.; Assaf, T.; Laschi, C.; Dario, P. Design and Development of a Sensorized Wireless Toy for Measuring Infants’ Manual Actions. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 444–453. [Google Scholar] [CrossRef]
- Rivera, D.; García, A.; Alarcos, B.; Velasco, J.; Ortega, J.; Martínez-Yelmo, I. Smart Toys Designed for Detecting Developmental Delays. Sensors 2016, 16, 1953. [Google Scholar] [CrossRef]
- Gutiérrez García, M.A.; Martín Ruiz, M.L.; Rivera, D.; Vadillo, L.; Valero Duboy, M.A. A Smart Toy to Enhance the Decision-Making Process at Children’s Psychomotor Delay Screenings: A Pilot Study. J. Med. Internet Res. 2017, 19, e171. [Google Scholar] [CrossRef] [PubMed]
- Faraci, F.D.; Papandrea, M.; Puiatti, A.; Agustoni, S.; Giulivi, S.; DrApuzzo, V.; Giordano, S.; Righi, F.; Barberis, O.; Thommen, E.; et al. AutoPlay: A Smart Toys-Kit for an Objective Analysis of Children Ludic Behavior and Development. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Boschi, S.R.M.S.; Frère, A.F. Grip and Pinch Capability Assessment System for Children. Med. Eng. Phys. 2013, 35, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Borghese, N.A.; Essenziale, J.; Mainetti, R.; Mancon, E.; Pagliaro, R.; Pajardi, G. Hand Rehabilitation and Telemonitoring through Smart Toys. Sensors 2019, 19, 5517. [Google Scholar] [CrossRef] [PubMed]
- Lampe, R.; Turova, V.; Blumenstein, T.; Alves-Pinto, A. Eye Movement during Reading in Young Adults with Cerebral Palsy Measured with Eye Tracking. Postgrad. Med. 2014, 126, 146–158. [Google Scholar] [CrossRef]
- Hokken, M.J.; Stein, N.; Pereira, R.R.; Rours, I.G.I.J.G.; Frens, M.A.; van der Steen, J.; Pel, J.J.M.; Kooiker, M.J.G. Eyes on CVI: Eye Movements Unveil Distinct Visual Search Patterns in Cerebral Visual Impairment Compared to ADHD, Dyslexia, and Neurotypical Children. Res. Dev. Disabil. 2024, 151, 104767. [Google Scholar] [CrossRef]
- Skaramagkas, V.; Giannakakis, G.; Ktistakis, E.; Manousos, D.; Karatzanis, I.; Tachos, N.; Tripoliti, E.; Marias, K.; Fotiadis, D.I.; Tsiknakis, M. Review of Eye Tracking Metrics Involved in Emotional and Cognitive Processes. IEEE Rev. Biomed. Eng. 2023, 16, 260–277. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Q.; Liu, D.; Wang, J.; Zhu, Z.; Feng, L. Eye Tracking Metrics to Screen and Assess Cognitive Impairment in Patients with Neurological Disorders. Neurol. Sci. 2020, 41, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Graziola, F.; Garone, G.; Grasso, M.; Capuano, A. Cognitive Assessment in GNAO1 Neurodevelopmental Disorder Using an Eye Tracking System. J. Clin. Med. 2021, 10, 3541. [Google Scholar] [CrossRef] [PubMed]
- Sweere, D.J.J.; Pel, J.J.M.; Kooiker, M.J.G.; van Dijk, J.P.; van Gemert, E.J.J.M.; Hurks, P.P.M.; Klinkenberg, S.; Vermeulen, R.J.; Hendriksen, J.G.M. Clinical Utility of Eye Tracking in Assessing Distractibility in Children with Neurological Disorders or ADHD: A Cross-Sectional Study. Brain Sci. 2022, 12, 1369. [Google Scholar] [CrossRef] [PubMed]
- Bolden, D.; Barmby, P.; Raine, S.; Gardner, M. How Young Children View Mathematical Representations: A Study Using Eye-Tracking Technology. Educ. Res. 2015, 57, 59–79. [Google Scholar] [CrossRef]
- Marshall, G. The Purpose, Design and Administration of a Questionnaire for Data Collection. Radiography 2005, 11, 131–136. [Google Scholar] [CrossRef]
- Javvaji, C.K.; Vagha, J.D.; Meshram, R.J.; Taksande, A. Assessment Scales in Cerebral Palsy: A Comprehensive Review of Tools and Applications. Cureus 2023, 15, e47939. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.J.; Palisano, R.J. Physical Therapists’ Perceptions of Factors Influencing the Acquisition of Motor Abilities of Children with Cerebral Palsy: Implications for Clinical Reasoning. Phys. Ther. 2002, 82, 237–248. [Google Scholar] [CrossRef]
- Rast, F.M.; Herren, S.; Labruyère, R. Acceptability of Wearable Inertial Sensors, Completeness of Data, and Day-to-Day Variability of Everyday Life Motor Activities in Children and Adolescents with Neuromotor Impairments. Front. Rehabil. Sci. 2022, 3, 923328. [Google Scholar] [CrossRef]
- De Luca, G.; Bressi, A.; Maselli, M.; Greco, F.; Cianchetti, M. Sensorizing Objects with Soft and Flexible Sensors Based on Laser-Induced Graphene. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15 July 2024; IEEE: New York, NY, USA, 2024; pp. 1–4. [Google Scholar]
- Haberfehlner, H.; Roth, Z.; Vanmechelen, I.; Buizer, A.I.; Jeroen Vermeulen, R.; Koy, A.; Aerts, J.-M.; Hallez, H.; Monbaliu, E. A Novel Video-Based Methodology for Automated Classification of Dystonia and Choreoathetosis in Dyskinetic Cerebral Palsy During a Lower Extremity Task. Neurorehabilit. Neural Repair 2024, 38, 479–492. [Google Scholar] [CrossRef]
- Zhao, M.; Gersch, T.M.; Schnitzer, B.S.; Dosher, B.A.; Kowler, E. Eye Movements and Attention: The Role of Pre-Saccadic Shifts of Attention in Perception, Memory and the Control of Saccades. Vision. Res. 2012, 74, 40–60. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, G.; Kalkantzi, A.; Mailleux, L.; Palomo-Carrión, R.; Feys, H.; Boyd, R.N.; Beani, E.; Cianchetti, M.; Filogna, S.; Prencipe, G.; et al. A Holistic Approach Towards Evaluating Upper Limb Function in Children with Unilateral Cerebral Palsy: A Narrative Review of Clinical Tools and Promising Technologies for Comprehensive Assessment. J. Clin. Med. 2025, 14, 6539. https://doi.org/10.3390/jcm14186539
De Luca G, Kalkantzi A, Mailleux L, Palomo-Carrión R, Feys H, Boyd RN, Beani E, Cianchetti M, Filogna S, Prencipe G, et al. A Holistic Approach Towards Evaluating Upper Limb Function in Children with Unilateral Cerebral Palsy: A Narrative Review of Clinical Tools and Promising Technologies for Comprehensive Assessment. Journal of Clinical Medicine. 2025; 14(18):6539. https://doi.org/10.3390/jcm14186539
Chicago/Turabian StyleDe Luca, Giovanna, Alexandra Kalkantzi, Lisa Mailleux, Rocío Palomo-Carrión, Hilde Feys, Roslyn N. Boyd, Elena Beani, Matteo Cianchetti, Silvia Filogna, Giuseppe Prencipe, and et al. 2025. "A Holistic Approach Towards Evaluating Upper Limb Function in Children with Unilateral Cerebral Palsy: A Narrative Review of Clinical Tools and Promising Technologies for Comprehensive Assessment" Journal of Clinical Medicine 14, no. 18: 6539. https://doi.org/10.3390/jcm14186539
APA StyleDe Luca, G., Kalkantzi, A., Mailleux, L., Palomo-Carrión, R., Feys, H., Boyd, R. N., Beani, E., Cianchetti, M., Filogna, S., Prencipe, G., Sgandurra, G., & Maselli, M. (2025). A Holistic Approach Towards Evaluating Upper Limb Function in Children with Unilateral Cerebral Palsy: A Narrative Review of Clinical Tools and Promising Technologies for Comprehensive Assessment. Journal of Clinical Medicine, 14(18), 6539. https://doi.org/10.3390/jcm14186539