Comparison of Fetal Crown-Rump Length Measurements between Thawed and Fresh Embryo Transfer
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonald, S.D.; Han, Z.; Mulla, S.; Murphy, K.E.; Beyene, J.; Ohlsson, A.; Knowledge Synthesis, G. Preterm birth and low birth weight among in vitro fertilization singletons: A systematic review and meta-analyses. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Shih, W.; Rushford, D.D.; Bourne, H.; Garrett, C.; McBain, J.C.; Healy, D.L.; Baker, H.W. Factors affecting low birthweight after assisted reproduction technology: Difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum. Reprod. 2008, 23, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Pandey, S.; Shetty, A.; Hamilton, M.; Bhattacharya, S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: A systematic review and meta-analysis. Fertil. Steril. 2012, 98, 368–377.e9. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, O.; Araki, R.; Kuwahara, A.; Itakura, A.; Saito, H.; Adamson, G.D. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: An analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil. Steril. 2014, 101, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.; Araki, R.; Tani, H.; Ishihara, O.; Kuwahara, A.; Irahara, M.; Yoshimura, Y.; Kuramoto, T.; Saito, H.; Nakaza, A.; et al. Implications of assisted reproductive technologies on term singleton birth weight: An analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil. Steril. 2013, 99, 450–455. [Google Scholar] [CrossRef]
- Syngelaki, A.; Chelemen, T.; Dagklis, T.; Allan, L.; Nicolaides, K.H. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat. Diagn. 2011, 31, 90–102. [Google Scholar] [CrossRef]
- Santorum, M.; Wright, D.; Syngelaki, A.; Karagioti, N.; Nicolaides, K.H. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet. Gynecol. 2017, 49, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.T. Ethics, audit, and research: All shades of grey. BMJ 2005, 330, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Salomon, L.J.; Alfirevic, Z.; Bilardo, C.M.; Chalouhi, G.E.; Ghi, T.; Kagan, K.O.; Lau, T.K.; Papageorghiou, A.T.; Raine-Fenning, N.J.; Stirnemann, J.; et al. ISUOG practice guidelines: Performance of first-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2013, 41, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.P.; Fleming, J.E. A critical evaluation of sonar “crown-rump length” measurements. Br. J. Obstet. Gynaecol. 1975, 82, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Papageorghiou, A.T.; Kennedy, S.H.; Salomon, L.J.; Ohuma, E.O.; Cheikh Ismail, L.; Barros, F.C.; Lambert, A.; Carvalho, M.; Jaffer, Y.A.; Bertino, E.; et al. International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet. Gynecol. 2014, 44, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Zaat, T.; Zagers, M.; Mol, F.; Goddijn, M.; van Wely, M.; Mastenbroek, S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2021, 2, CD011184. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Reschke, L.; Segars, J.; Baker, V.L. Frozen-thawed embryo transfer: The potential importance of the corpus luteum in preventing obstetrical complications. Fertil. Steril. 2020, 113, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S. Maternal and perinatal outcomes after fresh versus frozen embryo transfer-what is the risk-benefit ratio? Fertil. Steril. 2016, 106, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Du, M.; Li, Z.; Wang, L.; Hu, J.; Zhao, B.; Feng, Y.; Chen, X.; Sun, L. Fresh versus frozen embryo transfer for full-term singleton birth: A retrospective cohort study. J. Ovarian Res. 2018, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Spijkers, S.; Lens, J.W.; Schats, R.; Lambalk, C.B. Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecol. Obstet. Investig. 2017, 82, 538–546. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V.; et al. ART in Europe, 2014: Results generated from European registries by ESHRE: The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum. Reprod. 2018, 33, 1586–1601. [Google Scholar] [CrossRef] [PubMed]
- Kawwass, J.F.; Monsour, M.; Crawford, S.; Kissin, D.M.; Session, D.R.; Kulkarni, A.D.; Jamieson, D.J.; National ART Surveillance System (NASS) Group. Trends and outcomes for donor oocyte cycles in the United States, 2000–2010. JAMA 2013, 310, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.M.; van Wely, M.; Mol, F.; Repping, S.; Mastenbroek, S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2017, 3, CD011184. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.S.; Daneshmand, S.T.; Restrepo, H.; Garner, F.C.; Aguirre, M.; Hudson, C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil. Steril. 2013, 99, 389–392. [Google Scholar] [CrossRef]
- Laval, M.; Garlantezec, R.; Guivarc’h-Leveque, A. Birthweight difference of singletons conceived through in vitro fertilization with frozen versus fresh embryo transfer: An analysis of 5406 embryo transfers in a retrospective study 2013–2018. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101644. [Google Scholar] [CrossRef] [PubMed]
- Cavoretto, P.I.; Farina, A.; Girardelli, S.; Gaeta, G.; Spinillo, S.; Morano, D.; Amodeo, S.; Galdini, A.; Vigano, P.; Candiani, M. Greater fetal crown-rump length growth with the use of in vitro fertilization or intracytoplasmic sperm injection conceptions after thawed versus fresh blastocyst transfers: Secondary analysis of a prospective cohort study. Fertil. Steril. 2021, 116, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Pinborg, A.; Henningsen, A.A.; Loft, A.; Malchau, S.S.; Forman, J.; Andersen, A.N. Large baby syndrome in singletons born after frozen embryo transfer (FET): Is it due to maternal factors or the cryotechnique? Hum. Reprod. 2014, 29, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Ishii, R.; Shoda, A.; Kubo, M.; Okazaki, S.; Suzuki, M.; Okawa, R.; Enomoto, M.; Shitanaka, M.; Fujita, Y.; Nakao, K.; et al. Identifying a possible factor for the increased newborn size in singleton pregnancies after assisted reproductive technology using cryopreserved embryos, in comparison with fresh embryos. Reprod. Med. Biol. 2018, 17, 307–314. [Google Scholar] [CrossRef]
- Senapati, S.; Wang, F.; Ord, T.; Coutifaris, C.; Feng, R.; Mainigi, M. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J. Assist. Reprod. Genet. 2018, 35, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Conrad, K.P.; Baker, V.L. Corpus luteal contribution to maternal pregnancy physiology and outcomes in assisted reproductive technologies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R69–R72. [Google Scholar] [CrossRef] [PubMed]
- Conrad, K.P.; Petersen, J.W.; Chi, Y.Y.; Zhai, X.; Li, M.; Chiu, K.H.; Liu, J.; Lingis, M.D.; Williams, R.S.; Rhoton-Vlasak, A.; et al. Maternal Cardiovascular Dysregulation During Early Pregnancy After In Vitro Fertilization Cycles in the Absence of a Corpus Luteum. Hypertension 2019, 74, 705–715. [Google Scholar] [CrossRef]
- Weinerman, R. Growth differences after fresh and frozen embryo transfers: When do they begin? Fertil. Steril. 2021, 116, 75–76. [Google Scholar] [CrossRef]
- Bilagi, A.; Burke, D.L.; Riley, R.D.; Mills, I.; Kilby, M.D.; Katie Morris, R. Association of maternal serum PAPP-A levels, nuchal translucency and crown-rump length in first trimester with adverse pregnancy outcomes: Retrospective cohort study. Prenat. Diagn. 2017, 37, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Ubaldi, F.M.; Cimadomo, D.; Vaiarelli, A.; Fabozzi, G.; Venturella, R.; Maggiulli, R.; Mazzilli, R.; Ferrero, S.; Palagiano, A.; Rienzi, L. Advanced Maternal Age in IVF: Still a Challenge? The Present and the Future of Its Treatment. Front. Endocrinol. 2019, 10, 94. [Google Scholar] [CrossRef]
- Leon, G.; Papetta, A.; Spiliopoulou, C. Overview of the Greek legislation regarding assisted reproduction and comparison with the EU legal framework. Reprod. Biomed. Online 2011, 23, 820–823. [Google Scholar] [CrossRef]
- van Loendersloot, L.L.; Moolenaar, L.M.; van Wely, M.; Repping, S.; Bossuyt, P.M.; Hompes, P.G.A.; van der Veen, F.; Mol, B.W.J. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 214, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Medical Advisory, S. In vitro fertilization and multiple pregnancies: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2006, 6, 1–63. [Google Scholar]
- Veleva, Z.; Vilska, S.; Hyden-Granskog, C.; Tiitinen, A.; Tapanainen, J.S.; Martikainen, H. Elective single embryo transfer in women aged 36-39 years. Hum. Reprod. 2006, 21, 2098–2102. [Google Scholar] [CrossRef] [PubMed]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Tsioulou, P.; Grigoriadis, S.; Rapani, A.; Giannelou, P.; Asimakopoulou, M.; Kokkali, G.; Pantou, A.; et al. PGT-A: Who and when? Alpha systematic review and network meta-analysis of RCTs. J. Assist. Reprod. Genet. 2021, 38, 1939–1957. [Google Scholar] [CrossRef] [PubMed]
- Iuculano, A.; Stagnati, V.; Serrenti, M.; Peddes, C.; Monni, G.; Sole, G.; Cucca, F. Crown-rump length: Are they different or similar after homologous vs heterologous oocyte/embryo donation? Am. J. Obstet. Gynecol. 2017, 217, 224–225. [Google Scholar] [CrossRef]
(a) | |||||
Characteristics | Thawed Cycles | Fresh Cycles | p-Value | ||
Number of embryos | 1618 (40%) | 2426 (60%) | N/A | ||
Maternal age (mean/SD) | 39.8 (5.7) | 35.8 (4.3) | <0.001 | ||
CRL z-score (mean/SD) | 0.309 (0.806) | 0.199 (0.805) | <0.001 | ||
(b) | |||||
Characteristics | Thawed Cycles | Fresh Cycles | p-Value | OR | 95% CI |
Number of singleton gestations | 892 (71%) | 1228 (67.2%) | |||
Number of twin gestations | 363 (29%) | 599 (32.8%) | 0.005 | 1.20 | 1.06–1.36 |
Characteristics | Thawed Cycles | Fresh Cycles | p-Value |
Maternal age (mean/SD) | 40.1 (6.1) | 35.1 (4.3) | <0.001 |
CRL z-score (mean/SD) | 0.285 (0.869) | 0.184 (0.893) | 0.015 |
Characteristics | Own Oocytes | Donor Oocytes | p-Value |
Maternal age (mean/SD) | 37.5 (5.1) | 43.5 (4.7) | <0.001 |
CRL z-score (mean/SD) | 0.191 (1.05) | 0.431 (0.813) | 0.002 |
Characteristics | Thawed Cycles | Fresh Cycles | p-Value |
Maternal age (mean/SD) | 39.6 (5.3) | 36.4 (4.3) | <0.001 |
CRL z-score (mean/SD) | 0.327 (0.751) | 0.215 (0.709) | <0.001 |
Characteristics | Own Oocytes | Donor Oocytes | p-Value |
Maternal age (mean/SD) | 37.6 (4.5) | 43.7 (4.1) | <0.001 |
CRL z-score (mean/SD) | 0.455 (1.17) | 0.314 (0.919) | 0.412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitta, K.; Tsakiridis, I.; Giougi, E.; Mamopoulos, A.; Kalogiannidis, I.; Dagklis, T.; Athanasiadis, A. Comparison of Fetal Crown-Rump Length Measurements between Thawed and Fresh Embryo Transfer. J. Clin. Med. 2024, 13, 2575. https://doi.org/10.3390/jcm13092575
Mitta K, Tsakiridis I, Giougi E, Mamopoulos A, Kalogiannidis I, Dagklis T, Athanasiadis A. Comparison of Fetal Crown-Rump Length Measurements between Thawed and Fresh Embryo Transfer. Journal of Clinical Medicine. 2024; 13(9):2575. https://doi.org/10.3390/jcm13092575
Chicago/Turabian StyleMitta, Kyriaki, Ioannis Tsakiridis, Evaggelia Giougi, Apostolos Mamopoulos, Ioannis Kalogiannidis, Themistoklis Dagklis, and Apostolos Athanasiadis. 2024. "Comparison of Fetal Crown-Rump Length Measurements between Thawed and Fresh Embryo Transfer" Journal of Clinical Medicine 13, no. 9: 2575. https://doi.org/10.3390/jcm13092575
APA StyleMitta, K., Tsakiridis, I., Giougi, E., Mamopoulos, A., Kalogiannidis, I., Dagklis, T., & Athanasiadis, A. (2024). Comparison of Fetal Crown-Rump Length Measurements between Thawed and Fresh Embryo Transfer. Journal of Clinical Medicine, 13(9), 2575. https://doi.org/10.3390/jcm13092575