Variability in Profiles and Prevalences of Gram-Negative Bacteria in Urinary Tract Infections: A Population-Based Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagenlehner, F.M.E.; Bjerklund Johansen, T.E.; Cai, T.; Koves, B.; Kranz, J.; Pilatz, A.; Tandogdu, Z. Epidemiology, Definition and Treatment of Complicated Urinary Tract Infections. Nat. Rev. Urol. 2020, 17, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Rahman, A.U.; Khan, B.; Al-Mijalli, S.H.; Alswat, A.S.; Amin, A.; Eid, R.A.; Zaki, M.S.A.; Butt, S.; Ahmad, J.; et al. Antibiotic Resistance Profiling and Phylogenicity of Uropathogenic Bacteria Isolated from Patients with Urinary Tract Infections. Antibiotics 2023, 12, 1508. [Google Scholar] [CrossRef] [PubMed]
- Ak, O.; Batirel, A.; Ozer, S.; Çolakoğlu, S. Nosocomial Infections and Risk Factors in the Intensive Care Unit of a Teaching and Research Hospital: A Prospective Cohort Study. Med. Sci. Monit. 2011, 17, PH29–PH34. [Google Scholar] [CrossRef]
- Cefai, C. Antimicrobial stewardship: Systems and processes for effective antimicrobial medicine use. JAC Antimicrob Resist. 2019, 1, dlz025. [Google Scholar] [CrossRef]
- Zirpe, K.; Kapse, U.S.; Gurav, S.K.; Deshmukh, A.M.; Suryawanshi, P.B.; Wankhede, P.P.; Bhoyar, A.P.; Tiwari, A.M.; Desai, D.; Suryawanshi, R.; et al. Impact of an Antimicrobial Stewardship Program on Broad Spectrum Antibiotics Consumption in the Intensive Care Setting. Indian J. Crit. Care Med. 2023, 27, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A Systematic Review and Meta-Analysis of the Effects of Antibiotic Consumption on Antibiotic Resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Ong, A.; Mahobia, N.; Browning, D.; Schembri, M.; Somani, B.K. Trends in Antibiotic Resistance for over 700,000 Escherichia Coli Positive Urinary Tract Infections over Six Years (2014–2019) from a University Teaching Hospital. Cent. Eur. J. Urol. 2021, 74, 249–254. [Google Scholar] [CrossRef]
- Teoh, P.; Basarab, A.; Pickering, R.; Ali, A.; Hayes, M.; Somani, B.K. Changing Trends in Antibiotic Resistance for Urinary E. Coli Infections over Five Years in a University Hospital. J. Clin. Urol. 2014, 7, 116–120. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W. Gram-Negative Bacteria. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538213/ (accessed on 13 July 2023).
- Brumbaugh, A.R.; Mobley, H.L. Preventing Urinary Tract Infection: Progress toward an Effective Escherichia Coli Vaccine. Expert Rev. Vaccines 2012, 11, 663–676. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Mitchell, E.; Pearce, M.S.; Roberts, A. Gram-Negative Bloodstream Infections and Sepsis: Risk Factors, Screening Tools and Surveillance. Br. Med. Bull. 2019, 132, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.; Hutchison, A.; Rudder, S.; Trotter, E.; Waters, E.V.; Elumogo, N.; Langridge, G.C. Uropathogenic Escherichia Coli Population Structure and Antimicrobial Susceptibility in Norfolk, UK. J. Antimicrob. Chemother. 2023, 78, 2028–2036. [Google Scholar] [CrossRef] [PubMed]
- Al Hamdan, A.; Alghamdi, A.; Alyousif, G.; Hamza, F.; Shafey, M.M.; AlAmri, A.M.; Sunki, A.A. Evaluating the Prevalence and the Risk Factors of Gram-Negative Multi-Drug Resistant Bacteria in Eastern Saudi Arabia. Infect. Drug Resist. 2022, 15, 475–490. [Google Scholar] [CrossRef]
- Alsohaim, S.A.; Bawadikji, A.; Elkalmi, R.; Mahmud, M.A.M.; Hassali, M. Relationship between Antimicrobial Prescribing and Antimicrobial Resistance among UTI Patients at Buraidah Central Hospital, Saudi Arabia. J. Pharm. Bioallied. Sci. 2019, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Akter, T.; Mia, Z.; Shahriar, M. Antibiotic Sensitivity of Pathogens Causing Urinary Tract Infection. Bangladesh Pharm. J. 2013, 16, 53–58. [Google Scholar] [CrossRef]
- Hossain, A.; Hossain, S.A.; Fatema, A.N.; Wahab, A.; Alam, M.M.; Islam, M.N.; Hossain, M.Z.; Ahsan, G.U. Age and Gender-Specific Antibiotic Resistance Patterns among Bangladeshi Patients with Urinary Tract Infection Caused by Escherichia Coli. Heliyon 2020, 6, e04161. [Google Scholar] [CrossRef]
- Price, J.R.; Guran, L.A.; Gregory, W.T.; McDonagh, M.S. Nitrofurantoin vs. Other Prophylactic Agents in Reducing Recurrent Urinary Tract Infections in Adult Women: A Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol. 2016, 215, 548–560. [Google Scholar] [CrossRef]
- Sanchez, G.V.; Baird, A.M.G.; Karlowsky, J.A.; Master, R.N.; Bordon, J.M. Nitrofurantoin Retains Antimicrobial Activity against Multidrug-Resistant Urinary Escherichia Coli from US Outpatients. J. Antimicrob. Chemother. 2014, 69, 3259–3262. [Google Scholar] [CrossRef]
- Ibrahim, Z.; Behiry, A.; Attia, O.; El-sayed, H. Evaluation of in vitro Effect of Fosfomycin on Resistant Gram-Negative Pathogens in Urinary Tract Infection. Microbes Infect. Dis. 2022, 3, 339–347. [Google Scholar] [CrossRef]
- Cattrall, J.W.S.; Robinson, A.V.; Kirby, A. A Systematic Review of Randomised Clinical Trials for Oral Antibiotic Treatment of Acute Pyelonephritis. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2285–2291. [Google Scholar] [CrossRef]
- Hooton, T.M. Uncomplicated Urinary Tract Infection. N. Engl. J. Med. 2012, 366, 1028–1037. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- NICE guideline Pyelonephritis (Acute): Antimicrobial Prescribing. Available online: https://www.nice.org.uk/guidance/NG111 (accessed on 13 July 2023).
- Kazmi, S.Y.; Fathima, K.; Khan, N.; Kulsum, S.N.; Faraz, A. Sensitivity Profile of Fosfomycin, Nitrofurantoin, and Co-Trimoxazole Against Uropathogens Isolated From UTI Cases in a Secondary Care Center, KSA. Cureus 2024, 16, e53999. [Google Scholar] [CrossRef] [PubMed]
- Negri, M.; Lima, B.M.; Woloszynek, R.D.S.B.R.; Molina, R.A.S.; Germano, C.M.R.; Melo, D.G.; Souza, L.C.D.; Avó, L.R.D.S.D. Prevalence and Antimicrobial Resistance Profile of Pathogens Isolated from Patients with Urine Tract Infections Admitted to a University Hospital in a Medium-Sized Brazilian City. Rev. Inst. Med. Trop. Sao Paulo 2024, 66, e3. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, F.; Lin, J.; Li, P.; Yu, Y. Antibiotic Susceptibility Patterns and Trends of the Gram-Negative Bacteria Isolated from the Patients in the Emergency Departments in China: Results of SMART 2016–2019. BMC Infect. Dis. 2024, 24, 501. [Google Scholar] [CrossRef]
- Loloi, J.; Babar, M.; Davies, K.P.; Suadicani, S.O. Nanotechnology as a Tool to Advance Research and Treatment of Non-Oncologic Urogenital Diseases. Ther. Adv. Urol. 2022, 14, 175628722211090. [Google Scholar] [CrossRef] [PubMed]
- Mekky, A.E.; Abdelaziz, A.E.M.; Youssef, F.S.; Elaskary, S.A.; Shoun, A.A.; Alwaleed, E.A.; Gaber, M.A.; Al-Askar, A.A.; Alsamman, A.M.; Yousef, A.; et al. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A (Fnba) and Cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum Lycopersicum Silver Nanoparticles. Medicina 2024, 60, 515. [Google Scholar] [CrossRef] [PubMed]
- Sher, E.K.; Džidić-Krivić, A.; Sesar, A.; Farhat, E.K.; Čeliković, A.; Beća-Zećo, M.; Pinjic, E.; Sher, F. Current State and Novel Outlook on Prevention and Treatment of Rising Antibiotic Resistance in Urinary Tract Infections. Pharmacol. Ther. 2024, 261, 108688. [Google Scholar] [CrossRef]
- Hulscher, M.; Grol, R.; van der Meer, J. Antibiotic Prescribing in Hospitals: A Social and Behavioural Scientific Approach. Lancet Infect. Dis. 2010, 10, 167–175. [Google Scholar] [CrossRef]
- Goff, D.A.; Kullar, R.; Goldstein, E.J.C.; Gilchrist, M.; Nathwani, D.; Cheng, A.C.; Cairns, K.A.; Escandón-Vargas, K.; Villegas, M.V.; Brink, A.; et al. A Global Call from Five Countries to Collaborate in Antibiotic Stewardship: United We Succeed, Divided We Might Fail. Lancet Infect. Dis. 2017, 17, e56–e63. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Nordmann, P. Emerging Plasmid-Encoded Colistin Resistance: The Animal World as the Culprit? J. Antimicrob. Chemother. 2016, 71, 2326–2327. [Google Scholar] [CrossRef]
- Al Momani, W.M.; Ata, N.; Maslat, A.O. Colistin-Resistance Genes in Escherichia Coli Isolated from Patients with Urinary Tract Infections. PLoS ONE 2024, 19, e0305431. [Google Scholar] [CrossRef]
- Satlin, M.J.; van Duin, D.; Tamma, P.D.; Lodise, T.P.; Van Tyne, D.; Rodvold, K.A.; Rouphael, N.; Evans, S.R.; Fowler, V.G.; Hamasaki, T.; et al. Priorities and Progress in Gram-Negative Bacterial Infection Research by the Antibacterial Resistance Leadership Group. Clin. Infect. Dis. 2023, 77, S305–S313. [Google Scholar] [CrossRef]
- Ahmed, H.; Davies, F.; Francis, N.; Farewell, D.; Butler, C.; Paranjothy, S. Long-Term Antibiotics for Prevention of Recurrent Urinary Tract Infection in Older Adults: Systematic Review and Meta-Analysis of Randomised Trials. BMJ Open 2017, 7, e015233. [Google Scholar] [CrossRef] [PubMed]
- Köves, B.; Cai, T.; Veeratterapillay, R.; Pickard, R.; Seisen, T.; Lam, T.B.; Yuan, C.Y.; Bruyere, F.; Wagenlehner, F.; Bartoletti, R.; et al. Benefits and Harms of Treatment of Asymptomatic Bacteriuria: A Systematic Review and Meta-Analysis by the European Association of Urology Urological Infection Guidelines Panel. Eur. Urol. 2017, 72, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Cotton, E.; Geraghty, R.; Umranikar, S.; Saeed, K.; Somani, B. Prevalence of Asymptomatic Bacteriuria among Pregnant Women and Changes in Antibiotic Resistance: A 6-Year Retrospective Study. J. Clin. Urol. 2022, 17, 9–15. [Google Scholar] [CrossRef]
Age Group | |||||
---|---|---|---|---|---|
Gender | ≤18 | 19–40 | 41–60 | >60 | Total |
Male | 1623 (6.00%) | 1455 (5.38%) | 4457 (16.48%) | 19,502 (72.13%) | 27,037 (18.41%) |
Female | 11,231 (9.37%) | 23,180 (19.34%) | 20,904 (17.44%) | 64,515 (53.84%) | 119,830 (81.59%) |
Total | 12,854 (8.75%) | 24,635 (16.77%) | 25,361 (17.27%) | 84,017 (57.21%) | 146,867 |
Antibiotic | Category | Resistance n (%) | OR (CI) | p Value |
---|---|---|---|---|
Amp/Amoxicillin | Male | 19,371 (71.64%) | 1.663 (1.616–1.712) | <0.001 |
Female | 72,261 (60.30%) | Reference | ||
Cefalexin | Male | 5252 (19.43%) | 1.957 (1.889–2.027) | <0.001 |
Female | 13,143 (10.97%) | Reference | ||
Cefotaxime | Male | 1989 (7.48%) | 1.592 (1.510–1.678) | <0.001 |
Female | 5694 (4.82%) | Reference | ||
Ceftazidime | Male | 1931 (7.31%) | 1.130 (1.006–1.199) | <0.001 |
Female | 5438 (4.63%) | Reference | ||
Ciprofloxacin | Male | 4024 (15.03%) | 1.644 (1.581–1.708) | <0.001 |
Female | 11,523 (9.71%) | Reference | ||
Co-amoxiclav | Male | 2186 (8.23%) | 1.734 (1.647–1.825) | <0.001 |
Female | 5786 (4.91%) | Reference | ||
Gentamicin | Male | 2059 (7.70%) | 1.571 (1.492–1.655) | <0.001 |
Female | 5973 (5.03%) | Reference | ||
Nitrofurantoin | Male | 1705 (6.37%) | 2.551 (2.401–2.771) | <0.001 |
Female | 3080 (2.59%) | Reference | ||
Trimethoprim | Male | 7603 (28.41%) | 0.928 (0.901–0.956) | 0.232 |
Female | 35,531 (29.93%) | Reference |
Antibiotic | Age Group | Resistance n (%) | OR (CI) | p Value |
---|---|---|---|---|
Amp/Amoxicillin | ≤18 | 6295 (56.05%) | 0.788 (0.757–0.821) | <0.001 |
19–40 | 13,056 (56.32%) | 0.793 (0.769–0.818) | <0.001 | |
40–60 | 12,312 (58.90%) | 0.886 (0.859–0.914) | <0.001 | |
>60 | 40,598 (62.93%) | |||
Cefalexin | ≤18 | 1078 (9.60%) | 0.873 (0.807–0.946) | <0.001 |
19–40 | 2004 (9.46%) | 0.708 (0.664–0.755) | <0.001 | |
40–60 | 1994 (9.54%) | 0.789 (0.743–0.837) | <0.001 | |
>60 | 8067 (12.50%) | |||
Cefotaxime | ≤18 | 438 (3.90%) | 1.182 (1.028–1.360) | <0.001 |
19–40 | 881 (3.95%) | 1.405 (1.257–1.571) | <0.001 | |
40–60 | 873 (4.18%) | 1.229 (1.110–1.361) | <0.001 | |
>60 | 3502 (5.43%) | |||
Ceftazidime | ≤18 | 457 (4.07%) | 0.722 (0.659–0.792) | <0.001 |
19–40 | 866 (3.88%) | 0.651 (0.606–0.700) | <0.001 | |
40–60 | 892 (4.27%) | 0.778 (0.728–0.832) | <0.001 | |
>60 | 3664 (5.68%) | |||
Ciprofloxacin | ≤18 | 716 (6.36%) | 0.491 (0.452–0.533) | <0.001 |
19–40 | 1568 (7.03%) | 0.584 (0.550–0.620) | <0.001 | |
40–60 | 1741 (8.33%) | 0.745 (0.705–0.786) | <0.001 | |
>60 | 7498 (11.62%) | |||
Co-amoxiclav | <18 | 486 (4.33%) | 1.194 (1.051–1.356) | 0.001 |
19–40 | 886 (3.97%) | 1.018 (0.918–1.129) | <0.001 | |
40–60 | 916 (4.38%) | 1.053 (0.959–1.157) | <0.001 | |
>60 | 3498 (5.42%) | |||
Gentamicin | ≤18 | 409 (3.64%) | 0.773 (0.699–0.855) | <0.001 |
19–40 | 961 (4.33%) | 0.917 (0.852–0.987) | <0.001 | |
40–60 | 917 (4.39%) | 0.843 (0.786–0.905) | <0.001 | |
>60 | 3686 (5.71%) | |||
Nitrofurantoin | ≤18 | 105 (0.93%) | 0.330 (0.282–0.387) | <0.001 |
19–40 | 279 (1.22%) | 0.393 (0.351–0.440) | <0.001 | |
40–60 | 454 (2.17%) | 0.676 (0.620–0.737) | <0.001 | |
>60 | 2242 (3.48%) | |||
Trimethoprim | ≤18 | 3218 (28.65%) | 1.139 (1.089–1.192) | <0.001 |
19–40 | 6030 (35.16%) | 0.965 (0.932–1.000) | <0.001 | |
40–60 | 5998 (28.69%) | 0.990 (0.957–1.025) | <0.001 | |
>60 | 20,285 (31.44%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedbal, C.; Mahobia, N.; Browning, D.; Somani, B.K. Variability in Profiles and Prevalences of Gram-Negative Bacteria in Urinary Tract Infections: A Population-Based Analysis. J. Clin. Med. 2024, 13, 5311. https://doi.org/10.3390/jcm13175311
Nedbal C, Mahobia N, Browning D, Somani BK. Variability in Profiles and Prevalences of Gram-Negative Bacteria in Urinary Tract Infections: A Population-Based Analysis. Journal of Clinical Medicine. 2024; 13(17):5311. https://doi.org/10.3390/jcm13175311
Chicago/Turabian StyleNedbal, Carlotta, Nitin Mahobia, Dave Browning, and Bhaskar Kumar Somani. 2024. "Variability in Profiles and Prevalences of Gram-Negative Bacteria in Urinary Tract Infections: A Population-Based Analysis" Journal of Clinical Medicine 13, no. 17: 5311. https://doi.org/10.3390/jcm13175311
APA StyleNedbal, C., Mahobia, N., Browning, D., & Somani, B. K. (2024). Variability in Profiles and Prevalences of Gram-Negative Bacteria in Urinary Tract Infections: A Population-Based Analysis. Journal of Clinical Medicine, 13(17), 5311. https://doi.org/10.3390/jcm13175311