Impact of Ventilator Settings on Pulmonary Nodule Localization Accuracy in a Hybrid Operating Room: A Single-Center Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIS | adenocarcinoma in situ |
BMI | body mass index |
BSA | body surface area |
CT | computed tomography |
MIA | minimally invasive adenocarcinoma |
SpO2 | oxygen saturation |
IOCT | intraoperative CT |
POCT | preoperative CT |
OR | operating room |
References
- Chang, G.-C.; Chiu, C.-H.; Yu, C.-J.; Chang, Y.-C.; Chang, Y.-H.; Hsu, K.-H.; Wu, Y.-C.; Chen, C.-Y.; Hsu, H.-H.; Wu, M.-T.; et al. Low-dose CT screening among never-smokers with or without a family history of lung cancer in Taiwan: A prospective cohort study. Lancet Respir. Med. 2024, 12, 141–152. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, P.; Wang, Y.; Xu, J.; Yuan, X.; Wang, Z.; Lv, W.; Hu, J. Survival rates after lobectomy, segmentectomy, and wedge resection for non-small cell lung cancer. Ann. Thorac. Surg. 2018, 105, 1483–1491. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Tan, Z.; Zhang, T. Segmentectomy versus wedge resection for stage I non-small cell lung cancer: A meta-analysis. J. Surg. Res. 2019, 243, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Migliore, M.; Palmucci, S.; Nardini, M.; Basile, A. Imaging patterns of early stage lung cancer for the thoracic surgeon. J. Thorac. Dis. 2020, 12, 3349–3356. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Han, K.; Hur, J.; Lee, S.M.; Lee, J.W.; Hwang, S.H.; Seo, J.S.; Lee, K.H.; Kwon, W.; Kim, T.H.; et al. Comparative effectiveness and safety of preoperative lung localization for pulmonary nodules: A systematic review and meta-analysis. Chest 2017, 151, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Cornella, K.N.; Repper, D.C.; Palafox, B.A.; Razavi, M.K.; Loh, C.T.; Markle, K.M.; Openshaw, L.E. A surgeon’s guide for various lung nodule localization techniques and the newest technologies. Innovations 2021, 16, 26–33. [Google Scholar] [CrossRef]
- Ichinose, J.; Kohno, T.; Fujimori, S.; Harano, T.; Suzuki, S. Efficacy and complications of computed tomography-guided hook wire localization. Ann. Thorac. Surg. 2013, 96, 1203–1208. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, J.; Kheir, F.; Wagh, A.; Seguin-Givelet, A.; Sun, T.; Zhang, H. The disappearing hook wire: A case report. J. Thorac. Dis. 2023, 15, 7149–7154. [Google Scholar] [CrossRef]
- Chen, K.H.; Wu, C.H.; Wei, H.J.; Chan, C.W.; Hsia, J.Y. Migrating hook wire that travels to the heart via the bloodstream: A case report. Medicine 2023, 102, e33349. [Google Scholar] [CrossRef]
- Fang, H.Y.; Chang, K.W.; Chao, Y.K. Hybrid operating room for the intraoperative CT-guided localization of pulmonary nodules. Ann. Transl. Med. 2019, 7, 34. [Google Scholar] [CrossRef]
- Chao, Y.K.; Pan, K.T.; Wen, C.T.; Fang, H.Y.; Hsieh, M.J. A comparison of efficacy and safety of preoperative versus intraoperative computed tomography-guided thoracoscopic lung resection. J. Thorac. Cardiovasc. Surg. 2018, 156, 1974–1983.e1. [Google Scholar] [CrossRef] [PubMed]
- Futier, E.; Constantin, J.M.; Jaber, S. Protective lung ventilation in operating room: A systematic review. Minerva Anestesiol. 2014, 80, 726–735. [Google Scholar] [PubMed]
- Marret, E.; Cinotti, R.; Berard, L.; Piriou, V.; Jobard, J.; Barrucand, B.; Radu, D.; Jaber, S.; Bonnet, F.; The PPV study group. Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: A double-blind randomised controlled trial. Eur. J. Anaesthesiol. 2018, 35, 727–735. [Google Scholar] [CrossRef]
- Wang, Y.H.; Su, P.C.; Huang, H.C.; Au, K.; Lin, F.C.F.; Chen, C.Y.; Chou, M.C.; Hsia, J.Y. Pulmonary recruitment prior to intraoperative multiple pulmonary ground-glass nodule localization increases the localization accuracy—A retrospective study. J. Clin. Med. 2023, 12, 2998. [Google Scholar] [CrossRef]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.; Froio, S.; Chiumello, D. Protective lung ventilation during general anesthesia: Is there any evidence? Crit. Care 2014, 18, 210. [Google Scholar] [CrossRef]
- Hedenstierna, G.; Tokics, L.; Reinius, H.; Rothen, H.U.; Östberg, E.; Öhrvik, J. Higher age and obesity limit atelectasis formation during anaesthesia: An analysis of computed tomography data in 243 subjects. Br. J. Anaesth. 2020, 124, 336–344. [Google Scholar] [CrossRef]
- Reinius, H.; Jonsson, L.; Gustafsson, S.; Sundbom, M.; Duvernoy, O.; Pelosi, P.; Hedenstierna, G.; Fredén, F. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: A computerized tomography study. Anesthesiology 2009, 111, 979–987. [Google Scholar] [CrossRef]
- Pépin, J.L.; Timsit, J.F.; Tamisier, R.; Borel, J.C.; Lévy, P.; Jaber, S. Prevention and care of respiratory failure in obese patients. Lancet Respir. Med. 2016, 4, 407–418. [Google Scholar] [CrossRef]
- Cairo, J.M. Pilbeam’s Mechanical Ventilation: Physiological and Clinical Applications; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; pp. 191–202. [Google Scholar]
- Hsu, P.K.; Wu, Y.C. Electromagnetic navigation-guided one-stage dual localization of small pulmonary nodules. Chest 2018, 154, 1462–1463. [Google Scholar] [CrossRef]
- Eger, E.I.; Severinghaus, J.W. The rate of rise of PaCO2 in the apneic anesthetized patient. Anesthesiology 1961, 22, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T. Effects of repeat exposure to inhalation anesthetics on liver and renal function. J. Anaesthesiol. Clin. Pharmacol. 2013, 29, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.-Y.; Chen, K.-A.; Wen, Y.-W.; Wen, C.-T.; Pan, K.-T.; Chiu, C.-H.; Hsieh, M.-J.; Chao, Y.-K. Efficacy and safety of preoperative vs. intraoperative computed tomography-guided lung tumor localization: A randomized controlled trial. Front. Surg. 2021, 8, 809908. [Google Scholar] [CrossRef] [PubMed]
<8 mL/kg N = 81 | 8–10 mL/kg N = 95 | p Value | ||
---|---|---|---|---|
Gender | Female | 62 (76.5%) | 78 (82.1%) | 0.362 † |
Male | 19 (23.5%) | 17 (17.9%) | ||
Age, median (IQR) | 57 (51–65) | 54 (47–65) | 0.375 | |
Height median (IQR) | 159.0 (154.0–165.0) | 159.0 (155.0–165.0) | 0.898 | |
Body weight, median (IQR) | 59.0 (52.0–64.0) | 58.5 (54.0–68.0) | 0.707 | |
BMI median (IQR) | 22.4 (21.3–24.3) | 23.1 (21.4–25.3) | 0.098 | |
PBW, median (IQR) | 54.2 (48.8–63.3) | 51.5 (48.8–58.8) | 0.132 | |
Tidal volume median (IQR) | 450 (458–500) | 550 (500–625) | <0.001 | |
Contralateral lung operation | No | 65 (80.2%) | 77 (81.1%) | 0.893 † |
Yes | 16 (19.8%) | 18 (18.9%) | ||
Localization position | 30 degree tilt | 64 (79.0%) | 72 (75.7%) | 0.611 |
Decubitus | 17 (21.0%) | 23 (24.2%) | ||
Lung function | FVC | 102.0 (93.0–107.0) | 101.0 (93.0–112.0) | 0.260 |
FEV1 | 99 (88.0–107.0) | 98.0 (90.0–107.0) | 0.501 | |
Lung function | DLCO | 95.0 (87.0–108.0) | 98.0 (87.0–105.0) | 0.547 |
Lesions | 2 | 55 (67.9%) | 65 (68.4%) | 0.115 † |
3 | 13 (16.0%) | 23 (24.2%) | 0.547 | |
Lesions | 4 | 13 (16.0%) | 7 (7.4%) | 0.115 † |
Size (mm, median IQR) | 7.30 (6.0–8.50) | 7.20 (5.60–8.80) | 0.673 | |
Depth (mm, median IQR) | 70.0 (55.0–80.0) | 65.0 (55.0–75.0) | 0.209 | |
Dye or hook | Dye | 31 (38.3%) | 44 (46.3%) | 0.281 † |
Depth (mm, median IQR) | Hook | 50 (61.7%) | 51 (53.7%) | |
Operation | Wedge | 73 (90.1%) | 86 (90.5%) | 0.98 † |
Segmentectomy | 3 (3.7%) | 3 (3.2%) | ||
Operation | Lobectomy | 5 (6.2%) | 6 (6.3%) | 0.98 † |
Pathology | AIS | 11 (13.6%) | 18 (18.9%) | 0.70 † |
MIA | 43 (53.1%) | 46 (48.4%) | ||
Pathology | Adenocarcinoma | 15 (18.5%) | 17 (17.9%) | 0.70 † |
Metastasis | 1 (1.2%) | 0 | ||
Benign | 11 (13.6%) | 14 (14.7%) |
<8 mL/kg N = 81 | 8–10 mL/kg N = 95 | p Value | ||
---|---|---|---|---|
Apnea time | 5.25 (4.30–6.50) | 5.05 (4.25–5.80) | 0.091 | |
SpO2 (%, median, IQR) | 88 (84–94) | 90 (87–97) | 0.006 | |
Procedure time (min, IQR) | 18.0 (15.0–20.0) | 16.0 (14.0–19.0) | 0.032 | |
Accuracy (within 5 mm) | 42 (51.9%) | 86 (90.5%) | 0.001 | |
Accuracy with Lesions | 2 | 33 (60.0%) | 60 (92.3%) | |
3 | 6 (46.2%) | 21 (91.3%) | ||
4 | 3 (23.1%) | 5 (71.4%) | ||
Re-inflation | No | 46 (56.8%) | 64 (67.4%) | 0.149 † |
Yes | 35 (43.2%) | 31 (32.6%) | ||
Pneumothorax | No | 57 (70.4%) | 76 (80%) | 0.138 † |
Yes | 24 (29.6%) | 19 (20%) |
Accuracy | Univariate Logistic Regression Analysis | Multivariate Logistic Regression Analysis | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
BMI | 0.81 (0.72–0.91) | 0.000 | 0.79 (0.68–0.92) | 0.003 |
Tidal volume/PBW 8–10 mL/kg or <8 mL/kg | 0.11 (0.05–0.25) | 0.000 | 0.08 (0.03–0.21) | 0.000 |
Lesion number | 0.50 (0.32–0.80) | 0.003 | 0.48 (0.27–0.86) | 0.014 |
Dye or hook | 1.19 (0.60–2.33) | 0.619 | ||
Size (mm, median IQR) | 1.01 (0.88–1.16) | 0.875 | ||
Depth (mm, median IQR) | 0.95 (0.93–0.98) | 0.000 | 0.96 (0.94–0.99) | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, J.Y.; Huang, H.C.; Au, K.-K.; Chen, C.Y.; Wang, Y.H. Impact of Ventilator Settings on Pulmonary Nodule Localization Accuracy in a Hybrid Operating Room: A Single-Center Study. J. Clin. Med. 2024, 13, 5183. https://doi.org/10.3390/jcm13175183
Hsia JY, Huang HC, Au K-K, Chen CY, Wang YH. Impact of Ventilator Settings on Pulmonary Nodule Localization Accuracy in a Hybrid Operating Room: A Single-Center Study. Journal of Clinical Medicine. 2024; 13(17):5183. https://doi.org/10.3390/jcm13175183
Chicago/Turabian StyleHsia, Jiun Yi, Hsu Chih Huang, Kwong-Kwok Au, Chih Yi Chen, and Yu Hsiang Wang. 2024. "Impact of Ventilator Settings on Pulmonary Nodule Localization Accuracy in a Hybrid Operating Room: A Single-Center Study" Journal of Clinical Medicine 13, no. 17: 5183. https://doi.org/10.3390/jcm13175183
APA StyleHsia, J. Y., Huang, H. C., Au, K.-K., Chen, C. Y., & Wang, Y. H. (2024). Impact of Ventilator Settings on Pulmonary Nodule Localization Accuracy in a Hybrid Operating Room: A Single-Center Study. Journal of Clinical Medicine, 13(17), 5183. https://doi.org/10.3390/jcm13175183