Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Tissue Collection
2.3. Histological Processing of Tissues
2.4. Immunohistochemical Study
2.5. Statistical Analysis
3. Results
3.1. Study Group Characteristics
3.2. Pathological Evaluation
3.3. Immunohistochemical Study
3.3.1. CD68 Expression
3.3.2. CD80 Expression
3.3.3. Ghrelin Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Oikonomou, E.; Tsioufis, K.; Tousoulis, D. The Role of Macrophages in Atherosclerosis: Pathophysiologic Mechanisms and Treatment Considerations. Int. J. Mol. Sci. 2023, 24, 9568. [Google Scholar] [CrossRef] [PubMed]
- Blagov, A.V.; Markin, A.M.; Bogatyreva, A.I.; Tolstik, T.V.; Sukhorukov, V.N.; Orekhov, A.N. The Role of Macrophages in the Pathogenesis of Atherosclerosis. Cells 2023, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; He, S.; Song, Z.; Chen, S.; Lin, X.; Sun, H.; Zhou, P.; Peng, Q.; Du, S.; Zheng, S.; et al. Macrophage polarization states in atherosclerosis. Front. Immunol. 2023, 14, 1185587. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Targeting macrophages using nanoparticles: A potential therapeutic strategy for atherosclerosis. J. Mater. Chem. B 2021, 9, 3284–3294. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, A.N.; Orekhova, V.A.; Nikiforov, N.G.; Myasoedova, V.A.; Grechko, A.V.; Romanenko, E.B.; Zhang, D.; Chistiakov, D.A. Monocyte differentiation and macrophage polarization. Vessel Plus 2019, 3, 10. [Google Scholar] [CrossRef]
- Eshghjoo, S.; Kim, D.M.; Jayaraman, A.; Sun, Y.; Alaniz, R.C. Macrophage Polarization in Atherosclerosis. Genes 2022, 13, 756. [Google Scholar] [CrossRef]
- Napiórkowska-Baran, K.; Schmidt, O.; Szymczak, B.; Lubański, J.; Doligalska, A.; Bartuzi, Z. Molecular Linkage between Immune System Disorders and Atherosclerosis. Curr. Issues Mol. Biol. 2023, 45, 8780–8815. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, L.; Zhu, W.; Ying, T.; Yu, T.; Sun, M.; Zhu, X.; Du, Y.; Zhang, L. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J. Control. Release 2023, 353, 1068–1083. [Google Scholar] [CrossRef]
- Kim, H.W.; Shi, H.; Winkler, M.A.; Lee, R.; Weintraub, N.L. Perivascular Adipose Tissue and Vascular Perturbation/Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2569–2576. [Google Scholar] [CrossRef]
- Adachi, Y.; Ueda, K.; Takimoto, E. Perivascular adipose tissue in vascular pathologies-a novel therapeutic target for atherosclerotic disease? Front. Cardiovasc. Med. 2023, 10, 1151717. [Google Scholar] [CrossRef]
- Man, A.W.C.; Zhou, Y.; Xia, N.; Li, H. Perivascular Adipose Tissue Oxidative Stress in Obesity. Antioxidants 2023, 12, 1595. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qin, Z.; Wang, Y.; Li, X.; Zheng, Y.; Liu, Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front. Endocrinol. 2021, 12, 710842. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Bibi, A.; Valoti, M.; Fusi, F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells 2023, 12, 1196. [Google Scholar] [CrossRef] [PubMed]
- Farias-Itao, D.S.; Pasqualucci, C.A.; de Andrade, R.A.; da Silva, L.F.F.; Yahagi-Estevam, M.; Lage, S.H.G.; Leite, R.E.P.; Campo, A.B.; Suemoto, C.K. Macrophage Polarization in the Perivascular Fat Was Associated with Coronary Atherosclerosis. J. Am. Heart Assoc. 2022, 11, e023274. [Google Scholar] [CrossRef]
- Valentini, A.; Cardillo, C.; Della Morte, D.; Tesauro, M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023, 11, 3006. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Ukkola, O. Ghrelin and atherosclerosis. Curr. Opin. Lipidol. 2015, 26, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Mitacchione, G.; Powers, J.C.; Grifoni, G.; Woitek, F.; Lam, A.; Ly, L.; Settanni, F.; Makarewich, C.A.; McCormick, R.; Trovato, L.; et al. The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart. Circ. Heart Fail. 2014, 7, 643–651. [Google Scholar] [CrossRef]
- Togliatto, G.; Trombetta, A.; Dentelli, P.; Gallo, S.; Rosso, A.; Cotogni, P.; Granata, R.; Falcioni, R.; Delale, T.; Ghigo, E.; et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015, 64, 1370–1382. [Google Scholar] [CrossRef]
- Neale, J.P.H.; Pearson, J.T.; Thomas, K.N.; Tsuchimochi, H.; Hosoda, H.; Kojima, M.; Sato, T.; Jones, G.T.; Denny, A.P.; Daniels, L.J.; et al. Dysregulation of ghrelin in diabetes impairs the vascular reparative response to hindlimb ischemia in a mouse model; clinical relevance to peripheral artery disease. Sci. Rep. 2020, 10, 13651. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, N.; Annambhotla, S.; Jiang, J.; Wang, X.; Chai, H.; Lin, P.H.; Yao, Q.; Chen, C. Growth hormone-releasing peptide ghrelin inhibits homocysteine-induced endothelial dysfunction in porcine coronary arteries and human endothelial cells. J. Vasc. Surg. 2009, 49, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Wu, M.; Chen, L.; Jiang, B.; Mu, M.; Liu, L.; Yuan, Z. Ghrelin ameliorates atherosclerosis by inhibiting endoplasmic reticulum stress. Fundam. Clin. Pharmacol. 2017, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.S.; Kotokorpi, P.; Eccles, S.R.; Barnes, S.K.; Tokarczuk, P.F.; Allen, S.K.; Whitworth, H.S.; Guschina, I.A.; Evans, B.A.; Mode, A.; et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol. Endocrinol. 2009, 23, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Papotti, M.; Ghe, C.; Cassoni, P.; Catapano, F.; Deghenghi, R.; Ghigo, E.; Muccioli, G. Growth hormone secretagogue binding sites in peripheral human tissues. J. Clin. Endocrinol. Metab. 2000, 85, 3803–3807. [Google Scholar] [CrossRef] [PubMed]
- Kleinz, M.J.; Maguire, J.J.; Skepper, J.N.; Davenport, A.P. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc. Res. 2006, 69, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, H.; Guo, W.; Yu, L. Potential role of ghrelin in the regulation of inflammation. FASEB J. 2022, 36, e22508. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.J.; Li, W.; Zhong, P. Research progress of ghrelin on cardiovascular disease. Biosci. Rep. 2021, 41, BSR20203387. [Google Scholar] [CrossRef]
- Okumura, H.; Nagaya, N.; Enomoto, M.; Nakagawa, E.; Oya, H.; Kangawa, K. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. J. Cardiovasc. Pharmacol. 2002, 39, 779–783. [Google Scholar] [CrossRef]
- Xu, X.; Jhun, B.S.; Ha, C.H.; Jin, Z.G. Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation. Endocrinology 2008, 149, 4183–4192. [Google Scholar] [CrossRef]
- Shigeto, M.; Cha, C.Y.; Rorsman, P.; Kaku, K. A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion. J. Mol. Med. 2017, 95, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, C.J.; Tokola, H.; Bagi, Z.; Koller, A.; Pontinen, J.; Ola, A.; Vuolteenaho, O.; Szokodi, I.; Ruskoaho, H. Ghrelin induces vasoconstriction in the rat coronary vasculature without altering cardiac peptide secretion. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1522–H1529. [Google Scholar] [CrossRef] [PubMed]
- Li, W.G.; Gavrila, D.; Liu, X.; Wang, L.; Gunnlaugsson, S.; Stoll, L.L.; McCormick, M.L.; Sigmund, C.D.; Tang, C.; Weintraub, N.L. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109, 2221–2226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Ghrelin suppresses inflammation in HUVECs by inhibiting ubiquitin-mediated uncoupling protein 2 degradation. Int. J. Mol. Med. 2017, 39, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, M.; Schinzari, F.; Iantorno, M.; Rizza, S.; Melina, D.; Lauro, D.; Cardillo, C. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 2005, 112, 2986–2992. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.W.; Yu, M.; Chen, X.J.; Tan, X.R. Ghrelin could be a candidate for the prevention of in-stent restenosis. Cardiovasc. Drugs Ther. 2013, 27, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; López, M.; Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Lempesis, I.G.; Varrias, D.; Sagris, M.; Attaran, R.R.; Altin, E.S.; Bakoyiannis, C.; Palaiodimos, L.; Dalamaga, M.; Kokkinidis, D.G. Obesity and Peripheral Artery Disease: Current Evidence and Controversies. Curr. Obes. Rep. 2023, 12, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Akalu, Y.; Molla, M.D.; Dessie, G.; Ayelign, B. Physiological Effect of Ghrelin on Body Systems. Int. J. Endocrinol. 2020, 2020, 1385138. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, X.; Yuan, F.; Yang, Y.; Xu, L.; Dai, J.; Wang, W.; Fei, J.; Hou, X.; Fang, W. Ghrelin receptor deficiency aggravates atherosclerotic plaque instability. Front. Biosci. 2015, 20, 604–613. [Google Scholar]
- Iantorno, M.; Chen, H.; Kim, J.A.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E756–E764. [Google Scholar] [CrossRef]
- Rossi, F.; Castelli, A.; Bianco, M.J.; Bertone, C.; Brama, M.; Santiemma, V. Ghrelin inhibits contraction and proliferation of human aortic smooth muscle cells by cAMP/PKA pathway activation. Atherosclerosis 2009, 203, 97–104. [Google Scholar] [CrossRef]
- Ventoruzzo, G.; Mazzitelli, G.; Ruzzi, U.; Liistro, F.; Scatena, A.; Martelli, E. Limb Salvage and Survival in Chronic Limb-Threatening Ischemia: The Need for a Fast-Track Team-Based Approach. J. Clin. Med. 2023, 12, 6081. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ortega, M.; Somoza, B.; Huang, Y.; Gollasch, M.; Fernandez-Alfonso, M.S. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends. Endocrinol. Metab. 2015, 26, 367–375. [Google Scholar] [CrossRef]
- Lin, A.; Dey, D.; Wong, D.T.L.; Nerlekar, N. Perivascular Adipose Tissue and Coronary Atherosclerosis: From Biology to Imaging Phenotyping. Curr. Atheroscler. Rep. 2019, 21, 47. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, D.; Han, X.; Han, S.; Zhang, W.; Zang, Z.; Gai, C.; Rong, R.; Gao, T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front. Immunol. 2023, 14, 1271051. [Google Scholar] [CrossRef] [PubMed]
- Kobielarz, M.; Kozuń, M.; Gąsior-Głogowska, M.; Chwiłkowska, A. Mechanical and structural properties of different types of human aortic atherosclerotic plaques. J. Mech. Behav. Biomed. Mater. 2020, 109, 103837. [Google Scholar] [CrossRef]
- Gao, J.; Shi, L.; Gu, J.; Zhang, D.; Wang, W.; Zhu, X.; Liu, J. Difference of immune cell infiltration between stable and unstable carotid artery atherosclerosis. J. Cell. Mol. Med. 2021, 25, 10973–10979. [Google Scholar] [CrossRef]
- Shaikh, S.; Brittenden, J.; Lahiri, R.; Brown, P.A.; Thies, F.; Wilson, H.M. Macrophage subtypes in symptomatic carotid artery and femoral artery plaques. Eur. J. Vasc. Endovasc. Surg. 2012, 44, 491–497. [Google Scholar] [CrossRef]
- Wang, X.; Nai, Y.H.; Gan, J.; Lian, C.P.L.; Ryan, F.K.; Tan, F.S.L.; Chan, D.Y.S.; Ng, J.J.; Lo, Z.J.; Chong, T.T.; et al. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. Int. J. Mol. Sci. 2023, 24, 11123. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Mustapha, J.A.; Narula, J.; Mori, H.; Saab, F.; Jinnouchi, H.; Yahagi, K.; Sakamoto, A.; Romero, M.E.; Narula, N.; et al. Histopathologic Characterization of Peripheral Arteries in Subjects with Abundant Risk Factors: Correlating Imaging with Pathology. JACC Cardiovasc. Imaging 2019, 12, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.M.; Hatsukami, T.S.; Ferguson, M.S.; Small, R.; Polissar, N.L.; Yuan, C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002, 106, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Dannenberg, A.J.; Olin, J.W.; Bhatt, D.L.; Johnson, K.W.; Nadkarni, G.; Min, J.; Torii, S.; Poojary, P.; Anand, S.S.; et al. Pathology of Peripheral Artery Disease in Patients with Critical Limb Ischemia. J. Am. Coll. Cardiol. 2018, 72, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, L.; Qiao, M.; Zhao, T.; Zhang, R.; Dong, H. A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis. J. Cardiovasc. Dev. Dis. 2022, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; Sakakura, K.; Yahagi, K.; Joner, M.; Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol. 2014, 34, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Cosarca, M.C.; Horváth, E.; Molnar, C.; Molnár, G.B.; Russu, E.; Mureșan, V.A. Calcification patterns in femoral and carotid atheromatous plaques: A comparative morphometric study. Exp. Ther. Med. 2021, 22, 865. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Calcifying matrix vesicles and atherosclerosis. Biomed. Res. Int. 2017, 2017, 7463590. [Google Scholar] [CrossRef] [PubMed]
- Nagenborg, J.; Goossens, P.; Biessen, E.A.L.; Donners, M.M.P.C. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur. J. Pharmacol. 2017, 816, 14–24. [Google Scholar] [CrossRef]
- Tan, R.P.; Ryder, I.; Yang, N.; Lam, Y.T.; Santos, M.; Michael, P.L.; Robinson, D.A.; Ng, M.K.; Wise, S.G. Macrophage Polarization as a Novel Therapeutic Target for Endovascular Intervention in Peripheral Artery Disease. JACC Basic Transl. Sci. 2021, 6, 693–704. [Google Scholar] [CrossRef]
- Tillie, R.J.H.A. Plaque Stabilizing and Destabilizing Effects in Atherosclerosis: The Role of Microvessels, Macrophage Metabolism and Fibroblasts. Ph.D. Thesis, Maastricht University, Maastricht, The Netherlands, 2024. [Google Scholar] [CrossRef]
- de Gaetano, M.; Crean, D.; Barry, M.; Belton, O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front. Immunol. 2016, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbons, T.P.; Lee, N.; Tran, K.V.; Nicoloro, S.; Kelly, M.; Tam, S.K.; Czech, M.P. Coronary disease is not associated with robust alterations in inflammatory gene expression in human epicardial fat. JCI Insight 2019, 4, e124859. [Google Scholar] [CrossRef] [PubMed]
- Baatar, D.; Patel, K.; Taub, D.D. The effects of ghrelin on inflammation and the immune system. Mol. Cell. Endocrinol. 2011, 340, 44–58. [Google Scholar] [CrossRef]
- Katugampola, S.D.; Maguire, J.J.; Kuc, R.E.; Wiley, K.E.; Davenport, A.P. Discovery of recently adopted orphan receptors for apelin, urotensin II, and ghrelin identified using novel radioligands and functional role in the human cardiovascular system. Can. J. Physiol. Pharmacol. 2002, 80, 369–374. [Google Scholar] [CrossRef]
- Xu, M.; Liu, L.; Song, C.; Chen, W.; Gui, S. Ghrelin improves vascular autophagy in rats with vascular calcification. Life Sci. 2017, 179, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, V.; Timofte, D.; Oboroceanu, T.; Cretu-Silivestru, I.S.; Pricope-Veselin, A.; Moraru, M.; Butcovan, D. Association of ghrelin receptor and inflammation in peri-atrial adipose tissue from obese patients with postoperative atrial fibrillation. Acta Endocrinol. 2020, 16, 298–302. [Google Scholar] [CrossRef]
- Peiu, S.N.; Popa, R.F.; Akad, F.; Cretu-Silivestru, I.S.; Mihai, B.M.; Visnevschi, A.; Vudu, L.; Tamba, B.; Oboroceanu, T.; Timofte, D.; et al. Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. Appl. Sci. 2022, 12, 3307. [Google Scholar] [CrossRef]
Description of the Study Group | Patients/Years/Gender |
---|---|
Patients | 28 |
Age | 69 (53–86 *) |
Male | 21 (75%) |
PAD risk factors | |
Hypertension | 25 (89.28%; 18 M. 7 F.) |
Obesity | 5 (17.85%; 3 M. 2 F.) |
Diabetes | 13 (46.42%; 11 M. 2 F.) |
Dyslipidemia | 9 (32.14%; 6 M. 3 F.) |
Smoking | 20, of which 1 former smoker (71.42%; 17 M. 3 F.) |
Chronic kidney disease | 4 (14.28%; 3 M. 1 F.) |
Vascular complications | |
Previous arterial surgery | 5 (17.85%; 3 M. 2 F.) |
Diabetic foot | 3 (10.71%; 2 M. 1 F.) |
Sepsis and gangrene | 5 (17.85%; 3 M. 2 F.) |
Fibrous Plaque | Fibro-Lipidic Plaque | p-Value | Uncomplicated Plaque | Complicated Plaque | p-Value | |
---|---|---|---|---|---|---|
Age | 0.666 | 0.207 | ||||
50–59 y. o. | 2 | 3 | 0 | 5 | ||
60–69 y. o. | 5 | 5 | 4 | 6 | ||
70–79 y. o. | 5 | 3 | 1 | 7 | ||
≥80 y. o. | 4 | 1 | 0 | 5 | ||
Gender | 0.184 | 0.082 | ||||
F. | 6 | 1 | 3 | 4 | ||
M. | 10 | 11 | 2 | 19 |
Complication | Fibrous Plaque | Fibro-Lipidic Plaque | p-Value |
---|---|---|---|
Calcification | 7 | 12 | 0.003 |
Ulceration | 3 | 7 | 0.445 |
Thrombosis | 5 | 7 | 0.445 |
Plaque | p-Value | Plaque | p-Value | Periart. | p-Value | Periart. | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f. p. | f-l. p. | u. p. | c. p. | f. p. | f-l. p. | u. p. | c. p. | |||||
Inflammation | 8 8 0 | 1 9 2 | 0.027 | 5 0 0 | 4 17 2 | 0.002 | 10 6 0 | 6 4 2 | 0.216 | 4 1 0 | 10 9 2 | 0.585 |
0 1 2 | ||||||||||||
Inflammation type | 7 1 | 8 3 | 0.052 | 0 0 | 15 4 | 0.002 | 3 3 | 3 0 | 0.148 | 0 0 | 8 3 | 0.795 |
l-p. polymorphous |
Plaque | p-Value | Plaque | p-Value | Periart. | p-Value | Periart. | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f. p. | f-l. p. | u. p. | c. p. | f. p. | f-l. p. | u. p. | c. p. | |||||
CD68 | 0.017 | 0.074 | 0.809 | 0.367 | ||||||||
0 | 8 | 0 | 4 | 4 | 7 | 3 | 3 | 7 | ||||
1 | 3 | 4 | 0 | 7 | 3 | 3 | 0 | 6 | ||||
2 | 1 | 1 | 0 | 2 | 4 | 2 | 2 | 4 | ||||
3 | 4 | 7 | 1 | 10 | 2 | 2 | 0 | 4 | ||||
CD80 | 0.007 | 0.272 | 0.594 | 1.000 | ||||||||
0 | 10 | 1 | 4 | 7 | 9 | 7 | 4 | 12 | ||||
1 | 4 | 4 | 1 | 7 | 5 | 1 | 1 | 5 | ||||
2 | 1 | 6 | 0 | 7 | 1 | 1 | 0 | 2 | ||||
3 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | ||||
Ghrelin inten. | 0.097 | 0.562 | 0.209 | 1.000 | ||||||||
0 | 4 | 1 | 1 | 4 | 5 | 5 | 1 | 9 | ||||
1 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | ||||
2 | 2 | 5 | 0 | 7 | 1 | 0 | 0 | 0 | ||||
3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ||||
Ghrelin prop. | 0.067 | 1.000 | 0.209 | 1.000 | ||||||||
0 | 4 | 1 | 1 | 4 | 5 | 5 | 1 | 9 | ||||
1 | 0 | 5 | 0 | 5 | 0 | 3 | 0 | 3 | ||||
2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||||
3 | 2 | 3 | 0 | 5 | 1 | 0 | 0 | 1 |
Plaque | p-Value | Periart. | p-Value | |||
---|---|---|---|---|---|---|
u. p. | c. p. | u. p. | c. p. | |||
low high | 1 0 | 4 11 | 0.313 | 1 0 | 7 4 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiu, S.N.; Iosep, D.G.; Danciu, M.; Scripcaru, V.; Ianole, V.; Mocanu, V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. J. Clin. Med. 2024, 13, 3737. https://doi.org/10.3390/jcm13133737
Peiu SN, Iosep DG, Danciu M, Scripcaru V, Ianole V, Mocanu V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. Journal of Clinical Medicine. 2024; 13(13):3737. https://doi.org/10.3390/jcm13133737
Chicago/Turabian StylePeiu, Sorin Nicolae, Diana Gabriela Iosep, Mihai Danciu, Veronica Scripcaru, Victor Ianole, and Veronica Mocanu. 2024. "Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease" Journal of Clinical Medicine 13, no. 13: 3737. https://doi.org/10.3390/jcm13133737
APA StylePeiu, S. N., Iosep, D. G., Danciu, M., Scripcaru, V., Ianole, V., & Mocanu, V. (2024). Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. Journal of Clinical Medicine, 13(13), 3737. https://doi.org/10.3390/jcm13133737