Childhood Obesity and Congenital Heart Disease: A Lifelong Struggle
Abstract
:1. Introduction
2. Impact on Cardiac Hemodynamics
3. Impact of Obesity on Cardiac Function
4. Conventional Diastolic Function Parameters
5. Obesity and Arrhythmias
6. Obesity, Inflammation, and Atherogenesis in Congenital Heart Disease
7. Obesity and Aortic Coartation
8. Obesity and Arterial Switch Operation
9. Obesity and Tetralogy of Fallot
10. The Impact of Obesity in Fontan Patients
11. The Impact of Obesity on Pulmonary Arterial Hypertension and Untreated Shunt Lesions
12. Strategies for Prevention of Obesity in CHD
13. The Importance of a Dedicated Adult Congenital Cardiology Team
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andonian, C.; Muntean, I.; Mornoș, C.; Benedek, T. Congenital heart disease in children: A narrative review. Clujul Med. 2019, 92, 5–12. [Google Scholar]
- Benjamin, J.R.; Irina, I.; Rachael, W.; David, W.B. Cause of death in adults with congenital heart disease. Congenit. Heart Dis. 2018, 13, 10–16. [Google Scholar]
- Barbiero, S.M.; Palma, A.M.; Silva, K.S.; Maziero, R.S.; Bettiol, H. Overweight, obesity, and arterial hypertension in children and adolescents. Rev. Paul. Pediatr. 2014, 32, 257–264. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K. Prevalence of Overweight and Obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the Risk of Heart Failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef]
- Alpert, M.A. Obesity Cardiomyopathy: Pathophysiology and Evolution of the Clinical Syndrome. Am. J. Med. Sci. 2001, 321, 225–236. [Google Scholar] [CrossRef]
- Cote, A.T.; Harris, K.C.; Panagiotopoulos, C.; Sandor, G.G.; Devlin, A.M. Childhood Obesity and Cardiovascular Dysfunction. J. Am. Coll. Cardiol. 2013, 62, 1309–1319. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Berenson, G.S. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: The Bogalusa Heart Study. Am. J. Cardiol. 2002, 90, L3–L7. [Google Scholar] [CrossRef]
- Lauer, R.M.; Clarke, W.R.; Burns, T.L. Obesity in childhood: The Muscatine Study. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1997, 38, 432–437. [Google Scholar]
- Juonala, M.; Viikari, J.S.; Raitakari, O.T. Main findings from the prospective Cardiovascular Risk in Young Finns Study. Curr. Opin. Infect. Dis. 2013, 24, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Tsujimoto, K.; Hashimoto, K.; Kawahori, K.; Hanzawa, N.; Hamaguchi, M.; Seki, T.; Nawa, M.; Ehara, T.; Kitamura, Y.; et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat. Commun. 2018, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Nedaeinia, R.; Jafarpour, S.; Safabakhsh, S.; Ranjbar, M.; Poursafa, P.; Perez, P.; Salehi, R. Lifestyle Genomic Interactions in Health and Disease; Kelishadi, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 3, pp. 25–74. [Google Scholar] [CrossRef]
- Shibuya, T.; Horiya, Y. Introduction to epigenetic toxicology of chemical substances. Genes Environ. 2011, 33, 34–42. [Google Scholar] [CrossRef]
- Persson, M.; Razaz, N.; Bonamy, A.-K.E.; Villamor, E.; Cnattingius, S. Maternal Overweight and Obesity and Risk of Congenital Heart Defects. J. Am. Coll. Cardiol. 2019, 73, 44–53. [Google Scholar] [CrossRef]
- Cai, G.J.; Sun, X.X.; Zhang, L.; Hong, Q. Association between maternal body mass index and congenital heart defects in off-spring: A systematic review. Am. J. Obstet. Gynecol. 2014, 211, 91–117. [Google Scholar] [CrossRef]
- Ren, Z.; Luo, S.; Cui, J.; Tang, Y.; Huang, H.; Ding, G. Research Progress of Maternal Metabolism on Cardiac Development and Function in Offspring. Nutrients 2023, 15, 3388. [Google Scholar] [CrossRef]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Di Salvo, G.; Gala, S.; Castaldi, B.; Baldini, L.; Limongelli, G.; D’andrea, A.; Scognamiglio, G.; Sarubbi, B.; Caso, P.; Pacileo, G.; et al. Impact of Obesity on Left Ventricular Geometry and Function in Pediatric Patients after Successful Aortic Coarctation Repair. Echocardiography 2011, 28, 907–912. [Google Scholar] [CrossRef]
- Anagnostopoulou, A. The Burden of Obesity on Adult Survivors of Congenital Heart Disease, Past, and Future Directions. Curr. Probl. Cardiol. 2023, 48, 101610. [Google Scholar] [CrossRef]
- Steele, J.M.; Preminger, T.J.; Erenberg, F.G.; Wang, L.; Dell, K.; Alsaied, T.; Zahka, K.G. Obesity trends in children, adolescents, and young adults with congenital heart disease. Congenit. Heart Dis. 2019, 14, 517–524. [Google Scholar] [CrossRef]
- Radbill, A.E.; Smith, A.H.; Van Driest, S.L.; Fish, F.A.; Bichell, D.P.; Mettler, B.A.; Christian, K.G.; Edwards, T.L.; Kannankeril, P.J. Impact of obesity on post-operative arrhythmias after congenital heart surgery in children and young adults. Cardiol. Young 2022, 32, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
- Alpert, M.A.; Omran, J.; Bostick, B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016, 5, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Merritt, E.K. Why is it so hard to lose fat? Because it has to get out through your nose! An exercise physiology laboratory on oxygen consumption, metabolism, and weight loss. Adv. Physiol. Educ. 2021, 45, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, G.; Pacileo, G.; Del Giudice, E.M.; Natale, F.; Limongelli, G.; Verrengia, M.; Rea, A.; Fratta, F.; Castaldi, B.; D’Andrea, A.; et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: An ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur. Heart J. 2006, 27, 2689–2695. [Google Scholar] [CrossRef]
- Ng, A.C.T.; Delgado, V.; Borlaug, B.A.; Bax, J.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat. Rev. Cardiol. 2020, 18, 291–304. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Mishima, R.S.; Ariyaratnam, J.P.; Pitman, B.M.; Malik, V.; Emami, M.; McNamee, O.; Stokes, M.B.; Lau, D.H.; Sanders, P.; Elliott, A.D. Cardiorespiratory fitness, obesity and left atrial function in patients with atrial fibrillation. IJC Heart Vasc. 2022, 42, 101083. [Google Scholar] [CrossRef]
- Chahal, H.; McClelland, R.L.; Tandri, H.; Jain, A.; Turkbey, E.B.; Hundley, W.G.; Barr, R.G.; Kizer, J.; Lima, J.A.; Bluemke, D.A.; et al. Obesity and Right Ventricular Structure and Function: The MESA-Right Ventricle Study. Chest 2012, 141, 388–395. [Google Scholar] [CrossRef]
- Dušan, P.; Tamara, I.; Goran, V.; Gordana, M.-L.; Amira, P.-A. Left ventricular mass and diastolic function in obese children and adolescents. Pediatr. Nephrol. 2015, 30, 645–652. [Google Scholar] [CrossRef]
- Cabeza, J.F.; Aristizábal-Duque, C.H.; Sánchez, I.M.B.; Ortiz, M.R.; Almodóvar, A.R.; Ortega, M.D.; Martínez, F.E.; Saldaña, M.R.; del Pozo, F.J.F.; Álvarez-Ossorio, M.P.; et al. Relationship between overweight and obesity and cardiac dimensions and function in a paediatric population. Eur. J. Pediatr. 2022, 181, 1943–1949. [Google Scholar] [CrossRef]
- Willinger, L.; Brudy, L.; Meyer, M.; Oberhoffer-Fritz, R.; Ewert, P.; Müller, J. Overweight and Obesity in Patients with Congenital Heart Disease: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9931. [Google Scholar] [CrossRef] [PubMed]
- Fadel, B.M.; Mohty, D.; Husain, A.; Dahdouh, Z.; Al-Admawi, M.; Pergola, V.; Di Salvo, G. The Various Hemodynamic Profiles of the Patent Ductus Arteriosus in Adults. Echocardiography 2015, 32, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Brienza, C.; Grandone, A.; Di Salvo, G.; Corona, A.; Di Sessa, A.; Pascotto, C.; Calabrò, R.; Toraldo, R.; Perrone, L.; del Giudice, E.M. Subclinical hypothyroidism and myocardial function in obese children. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Obert, P.; Gueugnon, C.; Nottin, S.; Vinet, A.; Gayrard, S.; Rupp, T.; Dumoulin, G.; Tordi, N.; Mougin, F. Two-Dimensional Strain and Twist by Vector Velocity Imaging in Adolescents with Severe Obesity. Obesity 2012, 20, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Orhan, A.L.; Uslu, N.; Dayi, S.U.; Nurkalem, Z.; Uzun, F.; Erer, H.B.; Hasdemir, H.; Emre, A.; Karakus, G.; Soran, O.; et al. Effects of Isolated Obesity on Left and Right Ventricular Function: A Tissue Doppler and Strain Rate Imaging Study. Echocardiography 2010, 27, 236–243. [Google Scholar] [CrossRef]
- Barbosa, J.A.A.; Mota, C.C.; e Silva, A.C.S.; Nunes, M.D.C.P.; Barbosa, M.M. Assessing pre-clinical ventricular dysfunction in obese children and adolescents: The value of speckle tracking imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 882–889. [Google Scholar] [CrossRef]
- Aslan, E.; Sert, A.; Buyukinan, M.; Pirgon, M.O.; Kurku, H.; Yilmaz, H.; Odabas, D. Left and right ventricular function by echocardiography, tissue Doppler imaging, carotid intima-media thickness, and asymmetric dimethyl arginine levels in obese adolescents with metabolic syndrome. Cardiol. Young 2019, 29, 310–318. [Google Scholar] [CrossRef]
- Vitarelli, A.; Martino, F.; Capotosto, L.; Martino, E.; Colantoni, C.; Ashurov, R.; Ricci, S.; Conde, Y.; Maramao, F.; Vitarelli, M.; et al. Early Myocardial Deformation Changes in Hypercholesterolemic and Obese Children and Adolescents: A 2D and 3D speckle tracking echocardiography study. Medicine 2014, 93, e71. [Google Scholar] [CrossRef]
- Zeller, J.; Strack, C.; Fenk, S.; Mohr, M.; Loew, T.; Schmitz, G.; Maier, L.; Fischer, M.; Baessler, A. Relation Between Obesity, Metabolic Syndrome, Successful Long-Term Weight Reduction, and Right Ventricular Function. Int. Heart J. 2016, 57, 441–448. [Google Scholar] [CrossRef]
- Lewis, A.J.M.; Abdesselam, I.; Rayner, J.J.; Byrne, J.; Borlaug, B.A.; Neubauer, S.; Rider, O.J. Adverse right ventricular remodelling, function, and stress responses in obesity: Insights from cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1383–1390. [Google Scholar] [CrossRef]
- Xu, E.; Kachenoura, N.; della Valle, V.; Dubern, B.; Karsenty, A.; Tounian, P.; Dacher, J.; Layese, R.; Lamy, J.; le Pointe, H.D.; et al. Multichamber Dysfunction in Children and Adolescents with Severe Obesity: A Cardiac Magnetic Resonance Imaging Myocardial Strain Study. J. Magn. Reson. Imaging 2021, 54, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, G.; Pacileo, G.; Del Giudice, E.M.; Natale, F.; Limongelli, G.; Verrengia, M.; Rea, A.; Fratta, F.; Castaldi, B.; Gala, S.; et al. Atrial myocardial deformation properties in obese nonhypertensive children. J. Am. Soc. Echocardiogr. 2008, 21, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bech-Hanssen, O.; Al-Habeeb, W.; Ahmed, W.; Di Salvo, G.; Pergola, V.; Al-Admawi, M.; Al-Amri, M.; Al-Shahid, M.; Al-Buraiki, J.; Fadel, B.M. Echocardiography Detects Elevated Left Ventricular Filling Pressures in Heart Transplant Recipients. Echocardiography 2015, 32, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Patel, D.A.; Milani, R.V.; Ventura, H.O.; Shah, S.; Gilliland, Y. Impact of Echocardiographic Left Ventricular Geometry on Clinical Prognosis. Prog. Cardiovasc. Dis. 2014, 57, 3–9. [Google Scholar] [CrossRef]
- Katulska, K.; Milewska, A.; Wykretowicz, M.; Krauze, T.; Przymuszala, D.; Piskorski, J.; Stajgis, M.; Guzik, P.; Wysocki, H.; Wykrętowicz, A. Arterial stiffness, body fat compartments, central hemodynamics, renal function and left atrial size. Scand. J. Clin. Lab. Investig. 2013, 73, 563–568. [Google Scholar] [CrossRef]
- Burden, S.; Weedon, B.; Whaymand, L.; Rademaker, J.; Dawes, H.; Jones, A. The effect of overweight/obesity on diastolic function in children and adolescents: A meta-analysis. Clin. Obes. 2021, 11, e12476. [Google Scholar] [CrossRef]
- Stoddard, M.F.; Tseuda, K.; Thomas, M.; Dillon, S.; Kupersmith, J. The influence of obesity on left ventricular filling and systolic function. Am. Heart J. 1992, 124, 694–699. [Google Scholar] [CrossRef]
- von der Born, J.; Baberowski, S.; Memaran, N.; Grams, L.; Homeyer, D.; Borchert-Mörlins, B.; Sugianto, R.I.; Paulsen, M.; Bauer, E.; Grabitz, C.; et al. Impact of Sex and Obesity on Echocardiographic Parameters in Children and Adolescents. Pediatr. Cardiol. 2022, 43, 1502–1516. [Google Scholar] [CrossRef]
- Harada, K.; Orino, T.; Takada, G. Body Mass Index Can Predict Left Ventricular Diastolic Filling in Asymptomatic Obese Children. Pediatr. Cardiol. 2001, 22, 273–278. [Google Scholar] [CrossRef]
- Abed, H.S.; Samuel, C.S.; Lau, D.H.; Kelly, D.J.; Royce, S.G.; Alasady, M.; Mahajan, R.; Kuklik, P.; Zhang, Y.; Brooks, A.G.; et al. Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation. Heart Rhythm. 2013, 10, 90–100. [Google Scholar] [CrossRef]
- Saha, P.; Potiny, P.; Rigdon, J.; Morello, M.; Tcheandjieu, C.; Romfh, A.; Fernandes, S.M.; McElhinney, D.B.; Bernstein, D.; Lui, G.K.; et al. Substantial Cardiovascular Morbidity in Adults with Lower-Complexity Congenital Heart Disease. Circulation 2019, 139, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.D.; Hong, L.; Sridhar, A.; Menon, A.; Perike, S.; Zhang, M.; da Silva, I.B.; Yan, J.; Bonini, M.G.; Ai, X.; et al. Ion Channel and Structural Remodeling in Obesity-Mediated Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008296. [Google Scholar] [CrossRef] [PubMed]
- Bigras, J.-L. Cardiovascular Risk Factors in Patients with Congenital Heart Disease. Can. J. Cardiol. 2020, 36, 1458–1466. [Google Scholar] [CrossRef]
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Pandey, A.; Lau, D.H.; Alpert, M.A.; Sanders, P. Obesity and Atrial Fibrillation Prevalence, Pathogenesis, and Prognosis: Effects of Weight Loss and Exercise. J. Am. Coll. Cardiol. 2017, 70, 2022–2035. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Kavey, R.E.; Allada, V.; Daniels, S.R.; Hayman, L.L.; McCrindle, B.W.; Newburger, J.W.; Parekh, R.S.; Steinberger, J.; American Heart Association Expert Panel on Population and Prevention Science; Council on Cardiovascular Disease in the Young; et al. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. J. Cardiovasc. Nurs. 2007, 22, 218–253. [Google Scholar] [CrossRef]
- Schipper, H.S.; de Ferranti, S. Atherosclerotic Cardiovascular Risk as an Emerging Priority in Pediatrics. Pediatrics 2022, 150, e2022057956. [Google Scholar] [CrossRef]
- Stinson, S.E.; Jonsson, A.E.; Andersen, M.K.; Lund, M.A.V.; Holm, L.A.; Fonvig, C.E.; Huang, Y.; Stankevič, E.; Juel, H.B.; Ängquist, L.; et al. High Plasma Levels of Soluble Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 Are Associated with Inflammation and Cardiometabolic Risk Profiles in Pediatric Overweight and Obesity. J. Am. Heart Assoc. 2023, 12, e8145. [Google Scholar] [CrossRef]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef]
- Pergola, V.; Previtero, M.; Cecere, A.; Storer, V.; Castiello, T.; Baritussio, A.; Cabrelle, G.; Mele, D.; Motta, R.; Caforio, A.P.; et al. Clinical Value and Time Course of Pericoronary Fat Inflammation in Patients with Angiographically Nonobstructive Coronaries: A Preliminary Report. J. Clin. Med. 2021, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Aday, A.W.; Matsushita, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef] [PubMed]
- Opotowsky, A.R.; Valente, A.M.; Alshawabkeh, L.; Cheng, S.; Bradley, A.; Rimm, E.B.; Landzberg, M.J. Prospective cohort study of C-reactive protein as a predictor of clinical events in adults with congenital heart disease: Results of the Boston adult congenital heart disease biobank. Eur. Heart J. 2018, 39, 3253–3261. [Google Scholar] [CrossRef] [PubMed]
- Lui, G.K.; Rogers, I.S.; Ding, V.Y.; Hedlin, H.K.; MacMillen, K.; Maron, D.J.; Sillman, C.; Romfh, A.; Dade, T.C.; Haeffele, C.; et al. Risk Estimates for Atherosclerotic Cardiovascular Disease in Adults with Congenital Heart Disease. Am. J. Cardiol. 2017, 119, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, L.; Yang, T.; Huang, P.; Wang, L.; Zhao, L.; Zhang, S.; Ye, Z.; Chen, L.; Zheng, Z.; et al. Congenital Heart Disease and Risk of Cardiovascular Disease: A Meta-Analysis of Cohort Studies. J. Am. Heart Assoc. 2019, 8, e012030. [Google Scholar] [CrossRef]
- di Salvo, G.; Pacileo, G.; Limongelli, G.; Verrengia, M.; Rea, A.; Santoro, G.; Gala, S.; Castaldi, B.; D’Andrea, A.; Caso, P.; et al. Abnormal regional myocardial deformation properties and increased aortic stiffness in normotensive patients with aortic coarctation despite successful correction: An ABPM, standard echocardiography and strain rate imaging study. Clin. Sci. 2007, 113, 259–266. [Google Scholar] [CrossRef]
- Buys, R.; Budts, W.; Delecluse, C.; Vanhees, L. Exercise Capacity, Physical Activity, and Obesity in Adults with Repaired Aortic Coarctation. J. Cardiovasc. Nurs. 2013, 28, 66–73. [Google Scholar] [CrossRef]
- Smith-Parrish, M.; Yu, S.; Rocchini, A. Obesity and Elevated Blood Pressure following Repair of Coarctation of the Aorta. J. Pediatr. 2014, 164, 1074–1078.e1. [Google Scholar] [CrossRef]
- Di Salvo, G.; Bulbul, Z.; Pergola, V.; Issa, Z.; Siblini, G.; Muhanna, N.; Galzerano, D.; Fadel, B.; Al Joufan, M.; Al Fayyadh, M.; et al. Gothic aortic arch and cardiac mechanics in young patients after arterial switch operation for d-transposition of the great arteries. Int. J. Cardiol. 2017, 241, 163–167. [Google Scholar] [CrossRef]
- Di Salvo, G.; Al Bulbul, Z.; Issa, Z.; Fadel, B.; Al-Sehly, A.; Pergola, V.; Al Halees, Z.; Al Fayyadh, M. Left ventricular mechanics after arterial switch operation: A speckle-tracking echocardiography study. J. Cardiovasc. Med. 2016, 17, 217–224. [Google Scholar] [CrossRef]
- Pasquali, S.K.; Marino, B.S.; Powell, D.J.; McBride, M.G.; Paridon, S.M.; Meyers, K.E.; Mohler, E.R.; Walker, S.A.; Kren, S.; Cohen, M.S. Following the Arterial Switch Operation, Obese Children have Risk Factors for Early Cardiovascular Disease. Congenit. Heart Dis. 2010, 5, 16–24. [Google Scholar] [CrossRef]
- Pergola, V.; Di Salvo, G.; Fadel, B.; Galzerano, D.; Al-Shaid, M.; Al-Admawi, M.; Al Amri, M.; Al-Ahmadi, M.; Al-Halees, Z. The long term results of the Ross procedure: The importance of candidate selection. Int. J. Cardiol. 2020, 320, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Maskatia, S.A.; Spinner, J.A.; Nutting, A.C.; Slesnick, T.C.; Krishnamurthy, R.; Morris, S.A. Impact of Obesity on Ventricular Size and Function in Children, Adolescents and Adults with Tetralogy of Fallot After Initial Repair. Am. J. Cardiol. 2013, 112, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.; Santamaria, R.W.L.; Devlin, P.J.; Jegatheeswaran, A.; Russell, J.; Seed, M.; McCrindle, B.W. Negative Impact of Obesity on Ventricular Size and Function and Exercise Performance in Children and Adolescents with Repaired Tetralogy of Fallot. Can. J. Cardiol. 2020, 36, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- O’byrne, M.L.; McBride, M.G.; Paridon, S.; Goldmuntz, E. Association of Habitual Activity and Body Mass Index in Survivors of Congenital Heart Surgery: A Study of Children and Adolescents with Tetralogy of Fallot, Transposition of the Great Arteries, and Fontan Palliation. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 177–184. [Google Scholar] [CrossRef]
- Schmidt, A.C.S.; Yeh, D.D.; Tabtabai, S.; Kennedy, K.F.; Yeh, R.W.; Bhatt, A.B. National Trends in Hospitalizations of Adults with Tetralogy of Fallot. Am. J. Cardiol. 2016, 118, 906–911. [Google Scholar] [CrossRef]
- Dobson, R.J.; Ramparsad, N.; Walker, N.L.; McConnachie, A.; Danton, M.H.D. Outcomes of adults with repaired tetralogy of Fallot from the national Scottish Cohort. Cardiol. Young 2021, 31, 1306–1314. [Google Scholar] [CrossRef]
- Oliveira, A.L.A.; de Oliveira, M.E.P.; Guimarães, L.V.; Trindade, G.M.; Chaves, G.M.; Gonçalves, A.C.P.; de Souza, T.J.F.; Moraes, L.S.; Lujan, V.S.C.; Faria, L.S.d.P.; et al. Evaluation of right ventricle systolic function after tetralogy of Fallot repair: A systematic review comparing cardiac magnetic resonance and global longitudinal strain. Echocardiography 2023, 40, 4–14. [Google Scholar] [CrossRef]
- Clemente, E.A.; Casares, P.; Frontera, P.R.; Calvar, J.M.C.; de Toledo, J.S. Finding the Optimal Timing for Repair of Standard Tetralogy of Fallot: Analysis of Cardiac Magnetic Resonance and Echocardiography Parameters Related to Intermediate Term Outcomes in a Pediatric Population. Pediatr. Cardiol. 2021, 42, 1324–1333. [Google Scholar] [CrossRef]
- Ghonim, S.; Gatzoulis, M.A.; Ernst, S.; Li, W.; Moon, J.C.; Smith, G.C.; Heng, E.L.; Keegan, J.; Ho, S.Y.; McCarthy, K.P.; et al. Predicting Survival in Repaired Tetralogy of Fallot: A Lesion-Specific and Personalized Approach. JACC Cardiovasc. Imaging 2022, 15, 257–268. [Google Scholar] [CrossRef]
- Zachos, P.A.; Milaras, N.; Nevras, V.; Theodosis-Georgilas, A.; Lama, N.; Kelekis, N.L.; Ikonomidis, I.; Niakas, D. “Health-Related Quality of Life in Operated Adult Patients with Tetralogy of Fallot and Correlation with Advanced Imaging Indexes and Cardiopulmonary Exercise Test”: A Narrative Review. Curr. Probl. Cardiol. 2023, 48, 101184. [Google Scholar] [CrossRef]
- Yogeswaran, V.; Anigwe, C.; Salahuddin, A.; Aggarwal, A.; Grady, A.J.M.; Harris, I.S.; Sabanayagam, A.; Kouretas, P.C.; Mahadevan, V.S.; Agarwal, A. Association of Body Mass Index with Clinical Features and Outcomes in Adults with Fontan Palliation. J. Am. Heart Assoc. 2023, 12, e026732. [Google Scholar] [CrossRef]
- Chung, S.T.; Hong, B.; Patterson, L.; Petit, C.J.; Ham, J.N. High Overweight and Obesity in Fontan Patients: A 20-Year History. Pediatr. Cardiol. 2016, 37, 192–200. [Google Scholar] [CrossRef]
- Cao, J.Y.; Tran, D.; Briody, J.; Attard, C.; Hassan, E.B.; Simm, P.; Burchill, L.; Twigg, S.M.; Fiatarone-Singh, M.A.; Ayer, J.; et al. Impact of adiposity on clinical outcomes in people living with a Fontan circulation. Int. J. Cardiol. 2021, 329, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.L.; Celermajer, D.S.; Ayer, J.; Grigg, L.; Clendenning, C.; Hornung, T.; Justo, R.; Davis, G.M.; D’Udekem, Y.; Cordina, R. The “Super-Fontan” Phenotype: Characterizing Factors Associated with High Physical Performance. Front. Cardiovasc. Med. 2021, 8, 764273. [Google Scholar] [CrossRef] [PubMed]
- West, J.; Niswender, K.D.; Johnson, J.A.; Pugh, M.E.; Gleaves, L.; Fessel, J.P.; Hemnes, A.R. A potential role for insulin resistance in experimental pulmonary hypertension. Eur. Respir. J. 2012, 41, 861–871. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, C.; Huang, Y.; Huang, T.; Li, H. Metabolic Status in Patients with Operable vs. Inoperable Left-to-Right Shunts. Experiment 2018, 24, 2655–2660. [Google Scholar] [CrossRef]
- Rosso, D.; Carnazzo, G.; Giarelli, L.; Motta, L.; Maugeri, D. Atherosclerosis and pancreatic damage. Arch. Gerontol. Geriatr. 2001, 32, 95–100. [Google Scholar] [CrossRef]
- Campbell, M.; Allen, W.E.; Silversides, J.A.; Trimble, E.R. Glucose-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase-dependent upregulation of the platelet-derived growth factor-beta receptor potentiates vascular smooth muscle cell chemotaxis. Diabetes 2003, 52, 519–526. [Google Scholar] [CrossRef]
- Grinnan, D.; Farr, G.; Fox, A.; Sweeney, L. The Role of Hyperglycemia and Insulin Resistance in the Development and Progression of Pulmonary Arterial Hypertension. J. Diabetes Res. 2016, 2016, 2481659. [Google Scholar] [CrossRef]
- Moral-Sanz, J.; Moreno, L.; Cogolludo, A.; Perez-Vizcaino, F. Pulmonary Vascular Function in Insulin Resistance and Diabetes. Curr. Vasc. Pharmacol. 2014, 12, 473–482. [Google Scholar] [CrossRef] [PubMed]
- WHO. Report of the Commission on Eliminating Childhood Obesity; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- WHO. Global Nutrition Policy Review 2016–2017: Country Progress in Creating Enabling Policy Environments for Promoting Healthy Diets and Nutrition; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- UNICEF. Implementing Taxes on Sugar-Sweetened Beverages: An Overview of Current Approaches and the Potential Benefits for Children; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- United Nations Children’s Fund (UNICEF). Prevention of Overweight and Obesity in Children and Adolescents: UNICEF Pro-Gramming Guidance; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- Andonian, C.; Langer, F.; Beckmann, J.; Bischoff, G.; Ewert, P.; Freilinger, S.; Kaemmerer, H.; Oberhoffer, R.; Pieper, L.; Neidenbach, R.C. Overweight and obesity: An emerging problem in patients with congenital heart disease. Cardiovasc. Diagn. Ther. 2019, 9 (Suppl. S2), S360–S368. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.A.; Cotton, W.G.; Peralta, L.R. Teaching approaches and strategies that promote healthy eating in primary school children: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.; Tierney, S. Every child with congenital heart disease should be exercising. Curr. Opin. Cardiol. 2022, 37, 91–98. [Google Scholar] [CrossRef]
- Bassareo, P.P.; Mcmahon, C.J.; Prendiville, T.; James, A.; Roberts, P.; Oslizlok, P.; Walsh, M.A.; Kenny, D.; Walsh, K.P. Planning Transition of Care for Adolescents Affected by Congenital Heart Disease: The Irish National Pathway. Pediatr. Cardiol. 2023, 44, 24–33. [Google Scholar] [CrossRef]
- Assenza, G.E.; Krieger, E.V.; Baumgartner, H.; Cupido, B.; Dimopoulos, K.; Louis, C.; Lubert, A.M.; Stout, K.K.; Valente, A.M.; Zeppenfeld, K.; et al. AHA/ACC vs ESC Guidelines for Management of Adults with Congenital Heart Disease. J. Am. Coll. Cardiol. 2021, 78, 1904–1918. [Google Scholar] [CrossRef]
- Demianczyk, A.C.; Driscoll, C.F.B.; Karpyn, A.; Shillingford, A.; Kazak, A.E.; Sood, E. Coping strategies used by mothers and fathers following diagnosis of congenital heart disease. Child Care Health Dev. 2022, 48, 129–138. [Google Scholar] [CrossRef]
Aspect of Management | Component | Role of Healthcare Professionals |
---|---|---|
Cardiology Assessment | Clinical evaluation | Cardiologist |
Echocardiography | Cardiologist, Echocardiographer | |
Cardiac MRI/CT | Cardiologist, Cardiac MRI/CT Specialist | |
Cardiac Catheterization | Cardiologist, Interventional Cardiologist | |
Nutrition and Diet | Dietary assessment | Dietitian |
Individualized meal planning | Dietitian | |
Nutritional counseling | Dietitian | |
Physical Activity | Exercise prescription | Cardiologist, Exercise Physiologist |
Tailored exercise programs | Exercise Physiologist | |
Monitoring of physical activity | Exercise Physiologist | |
Weight Management | Weight assessment | Pediatrician, Dietitian |
Weight monitoring | Pediatrician, Dietitian | |
Weight management counseling | Pediatrician, Dietitian | |
Psychosocial Support | Emotional well-being support | Psychologist, Counselor |
Coping strategies | Psychologist, Counselor | |
Family support and counseling | Psychologist, Counselor | |
Medication Management | Medication prescription | Cardiologist, Pediatrician |
Medication monitoring | Cardiologist, Pediatrician | |
Adverse effects monitoring | Cardiologist, Pediatrician | |
Monitoring of CHD Status | Regular check-ups | Cardiologist, Pediatrician |
Periodic echocardiography | Cardiologist, Echocardiographer | |
Cardiac MRI/CT follow-up | Cardiologist, Cardiac MRI/CT Specialist | |
Management of Complications | Heart failure management | Cardiologist, Pediatrician |
Arrhythmia management | Cardiologist, Electrophysiologist | |
Pulmonary hypertension | Cardiologist, Pulmonologist | |
Transition to Adult Care | Transition planning | Cardiologist, Pediatrician, Transition Coordinator |
Coordination with adult care | Adult Cardiology Specialized Centre | |
Health education for adults | Adult Cardiologist Specialized Centre |
Multidisciplinary Approach | A Multidisciplinary Approach Including Cardiologists, Dietitians, Exercise Physiologists, and Mental Health Specialists Allows for a Comprehensive Assessment and Personalized Interventions Tailored to the Individual Patient′s Needs. |
Nutritional Counseling | Dietitians can work closely with patients and their families to create meal plans that support cardiovascular health and weight management while taking into account any dietary restrictions or considerations related to the CHD physiology. |
Psychological Support | Mental health support and counseling can play a crucial role in addressing emotional eating, stress management, and fostering a positive body image. |
Regular Monitoring and Follow-Up | Consistent follow-up with healthcare providers allows for early identification of potential weight-related issues and timely interventions. |
Physical Activity | Exercise programs should be tailored to the individual′s capabilities and medical considerations, with an emphasis on safe and enjoyable activities. |
Family Support and Education | Family involvement and support are essential for promoting healthy behaviors and lifestyle changes in Fontan patients. Educating families about the importance of nutrition and exercise and involving them in the treatment process can enhance the effectiveness of obesity management strategies. |
Addressing Sedentary Behaviors | Reducing sedentary behaviors, such as excessive screen time and prolonged sitting, is crucial for preventing weight gain in CHD patients. Encouraging active play and limiting screen time can contribute to overall health improvement. |
Peer Support and Group Activities | Providing opportunities for CHD patients to engage in group activities and interact with peers with similar conditions can create a supportive environment and motivate them to maintain a healthy lifestyle. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, G.; Cattapan, I.; Fumanelli, J.; Pozza, A.; Moscatelli, S.; Sabatino, J.; Avesani, M.; Reffo, E.; Sirico, D.; Castaldi, B.; et al. Childhood Obesity and Congenital Heart Disease: A Lifelong Struggle. J. Clin. Med. 2023, 12, 6249. https://doi.org/10.3390/jcm12196249
Di Salvo G, Cattapan I, Fumanelli J, Pozza A, Moscatelli S, Sabatino J, Avesani M, Reffo E, Sirico D, Castaldi B, et al. Childhood Obesity and Congenital Heart Disease: A Lifelong Struggle. Journal of Clinical Medicine. 2023; 12(19):6249. https://doi.org/10.3390/jcm12196249
Chicago/Turabian StyleDi Salvo, Giovanni, Irene Cattapan, Jennifer Fumanelli, Alice Pozza, Sara Moscatelli, Jolanda Sabatino, Martina Avesani, Elena Reffo, Domenico Sirico, Biagio Castaldi, and et al. 2023. "Childhood Obesity and Congenital Heart Disease: A Lifelong Struggle" Journal of Clinical Medicine 12, no. 19: 6249. https://doi.org/10.3390/jcm12196249