Influence of Disease Modifying Treatment, Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Vaccination on Coronavirus Disease 2019 Risk and Outcome in Multiple Sclerosis and Neuromyelitis Optica
Abstract
:1. Introduction
2. Materials and Methods
3. Statistics
4. Results
4.1. Patients and Number of COVID-19 Cases
4.2. Variables Associated with Risk of COVID-19
4.3. Variables Associated with Severe COVID-19
5. Discussion
Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moghadasi, A.N.; Mirmosayyeb, O.; Barzegar, M.; Sahraian, M.A.; Ghajarzadeh, M. The prevalence of COVID-19 infection in patients with multiple sclerosis (MS): A systematic review and meta-analysis. Neurol. Sci. 2021, 42, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Nouri, H.; Maracy, M.R.; Sigari, A.A.; Salari, M.; Blanco, Y.; Sepúlveda, M.; Zabalza, A.; Mahdavi, S.; Baratian, M.; et al. Risk factors of severe COVID-19 in people with multiple sclerosis: A systematic review and meta-analysis. Rev. Neurol. 2022, 178, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yu, W.; Sun, M.; Zhang, W.; Zhou, D.; Sun, J.; Wang, M. Outcome of COVID-19 Infection in Patients with Multiple Sclerosis Who Received Disease-Modifying Therapies: A Systematic Review and Meta-Analysis. J. Clin. Neurol. 2023, 19, 381–391. [Google Scholar] [CrossRef]
- Simpson-Yap, S.; de Brouwer, E.; Kalincik, T.; Rijke, N.; Hillert, J.A.; Walton, C.; Edan, G.; Moreau, Y.; Spelman, T.; Geys, L.; et al. Associations of Disease-Modifying Therapies with COVID-19 Severity in Multiple Sclerosis. Neurology 2021, 97, e1870–e1885. [Google Scholar] [CrossRef]
- Simpson-Yap, S.; Pirmani, A.; Kalincik, T.; De Brouwer, E.; Geys, L.; Parciak, T.; Helme, A.; Rijke, N.; Hillert, J.A.; Moreau, Y.; et al. Updated Results of the COVID-19 in MS Global Data Sharing Initiative. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200021. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Dolev, M.; Menascu, S.; Magalashvili, D.; Flechter, S.; Givon, U.; Guber, D.; et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: Up to 6 months cross-sectional study. J. Neuroimmunol. 2021, 361, 577746. [Google Scholar] [CrossRef]
- Jakimovski, D.; Zakalik, K.; Awan, S.; Kavak, K.S.; Pennington, P.; Hojnacki, D.; Kolb, C.; Lizarraga, A.A.; Eckert, S.P.; Sarrosa, R.; et al. COVID-19 Vaccination in Multiple Sclerosis and Inflammatory Diseases: Effects from Disease-Modifying Therapy, Long-Term Seroprevalence and Breakthrough Infections. Vaccines 2022, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Nouri, H.; Pitzalis, M.; Idda, M.L.; Salari, M.; Baratian, M.; Mahdavi, S.; Abhari, A.P.; Sedaghat, N. Multiple sclerosis disease-modifying therapies and COVID-19 vaccines: A practical review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 986–994. [Google Scholar] [CrossRef]
- Holroyd, K.B.; Healy, B.C.; Conway, S.; Houtchens, M.; Bakshi, R.; Bhattacharyya, S.; Bose, G.; Galetta, K.; Kaplan, T.; Severson, C.; et al. Humoral response to COVID-19 vaccination in MS patients on disease modifying therapy: Immune profiles and clinical outcomes. Mult. Scler. Relat. Disord. 2022, 67, 104079. [Google Scholar] [CrossRef]
- Disanto, G.; Sacco, R.; Bernasconi, E.; Martinetti, G.; Keller, F.; Gobbi, C.; Zecca, C. Association of Disease-Modifying Treatment and Anti-CD20 Infusion Timing with Humoral Response to 2 SARS-CoV-2 Vaccines in Patients with Multiple Sclerosis. JAMA Neurol. 2021, 78, 1529–1531. [Google Scholar] [CrossRef]
- Disanto, G.; Galante, A.; Cantu, M.; Sacco, R.; Mele, F.; Eisler, J.J.; Keller, F.; Bernasconi, E.; Sallusto, F.; Zecca, C.; et al. Longitudinal Postvaccine SARS-CoV-2 Immunoglobulin G Titers, Memory B-Cell Responses, and Risk of COVID-19 in Multiple Sclerosis Over 1 Year. Neurol. Neuroimmunol. Neuroinflamm. 2022, 10, e200043. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 Revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; de Seze, J.; Fujihara, K.; Greenberg, B.; Jacob, A.; et al. International consensus diagnostic criteria for neu-romyelitis optica spectrum disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Sotrovimab: First Approval. Drugs 2022, 82, 477–484. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.; Siew, R.W.E.; Gulam, M.Y.; Tye, J.S.N.; Aw, A.Y.Y.; Sivalingam, T.; Peng, X.; Yong, K.P.; Saffari, S.E.; Chao, Y.; et al. COVID-19 infection after SARS-CoV-2 mRNA vaccination in Multiple Sclerosis, AQP4-antibody NMOSD and MOGAD patients during the Omicron subvariant BA.1/2 wave in Singapore. J. Neurol. 2023, 270, 2817–2825. [Google Scholar] [CrossRef]
- Jaber, A.; Patel, M.; Sylvester, A.; Yarussi, M.; Kalina, J.T.; Mendoza, J.P.; Avila, R.L.; Tremblay, M.A. COVID-19 Vaccine Response in People with Multiple Sclerosis Treated with Dimethyl Fumarate, Diroximel Fumarate, Natalizumab, Ocrelizumab, or Interferon Beta Therapy. Neurol. Ther. 2023, 12, 687–700. [Google Scholar] [CrossRef]
- Maniscalco, G.T.; Liotti, A.; Ferrara, A.L.; Prestipino, E.; Salvatore, S.; Di Battista, M.E.; Moreggia, O.; Cesare, D.D.G.; Vastano, R.; Belardo, M.; et al. Humoral efficacy of the third SARS-CoV-2 vaccine dose in Multiple Sclerosis subjects undergoing different disease-modifying therapies. Mult. Scler. Relat. Disord. 2022, 68, 104371. [Google Scholar] [CrossRef]
- Otto, C.; Schwarz, T.; Jeworowski, L.M.; Schmidt, M.L.; Walper, F.; Pache, F.; Schindler, P.; Niederschweiberer, M.; Krumbholz, A.; Rose, R.; et al. Humoral immune responses remain quantitatively impaired but improve qualitatively in anti-CD20-treated patients with multiple sclerosis after three or four COVID-19 vaccinations. Mult. Scler. J. 2023, 29, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, J.J.; Mittl, K.; Rowles, W.; Zamecnik, C.R.; Loudermilk, R.P.; Gerungan, C.; Spencer, C.M.; Sagan, S.A.; Alexander, J.; Mcpolin, K.; et al. Longitudinal adaptive immune responses following sequential SARS-CoV-2 vaccinations in MS patients on anti-CD20 therapies and sphingosine-1-phosphate receptor modulators. Mult. Scler. Relat. Disord. 2022, 70, 104484. [Google Scholar] [CrossRef] [PubMed]
- Tallantyre, E.C.; Vickaryous, N.; Anderson, V.; Asardag, A.N.; Baker, D.; Bestwick, J.; Bramhall, K.; Chance, R.; Evangelou, N.; George, K.; et al. COVID-19 Vaccine Response in People with Multiple Sclerosis. Ann. Neurol. 2021, 91, 89–100. [Google Scholar] [CrossRef]
- Brill, L.; Raposo, C.; Rechtman, A.; Zveik, O.; Levin, N.; Oiknine-Djian, E.; Wolf, D.G.; Vaknin-Dembinsky, A. Severe Acute Respiratory Syndrome Coronavirus 2 Third Vaccine Immune Response in Multiple Sclerosis Patients Treated with Ocrelizumab. Ann. Neurol. 2022, 91, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Stoll, S.; Desai, S.; Levit, E. A retrospective evaluation of seroconversion after COVID-19 during the early Omicron wave in fully vaccinated multiple sclerosis patients receiving anti-CD20 therapies. Mult. Scler. Relat. Disord. 2023, 71, 104574. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.R.; Mahadeen, A.Z.; Carlson, A.K.; Planchon, S.M.; Sedlak, J.; Husak, S.; Bermel, R.A.; Cohen, J.A.; Moss, B.P. Clinical features and outcomes of COVID-19 despite SARS-CoV-2 vaccination in people with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2021, 7. [Google Scholar] [CrossRef]
- Sormani, M.P.; Schiavetti, I.; Inglese, M.; Carmisciano, L.; Laroni, A.; Lapucci, C.; Visconti, V.; Serrati, C.; Gandoglia, I.; Tassinari, T.; et al. Breakthrough SARS-CoV-2 infections after COVID-19 mRNA vaccination in MS patients on disease modifying therapies during the Delta and the Omicron waves in Italy. EBioMedicine 2022, 80, 104042. [Google Scholar] [CrossRef]
- van Kempen, Z.L.E.; Stalman, E.W.; Steenhuis, M.; Kummer, L.Y.L.; van Dam, K.P.J.; Wilbrink, M.F.; Brinke, A.T.; van Ham, S.M.; Kuijpers, T.; Rispens, T.; et al. SARS-CoV-2 omicron breakthrough infections in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 94, 280–283. [Google Scholar] [CrossRef]
- Grech, L.; Kwok, A.; Nguyen, M.; Winkel, A.; Butler, E.; Allan, M.; Bain, N.; Segelov, E.; On behalf of the MSVACCS Investigators COVID-19 Vaccine Status. Intent, Hesitancy, and Disease-Related Beliefs in People with Multiple Sclerosis. Vaccines 2023, 11, 410. [Google Scholar] [CrossRef]
- Bertozzi, A.; Mariottini, A.; Marchi, L.; Di Cristinzi, M.; Nistri, R.; Damato, V.; Mechi, C.; Barilaro, A.; Massacesi, L.; Repice, A.M. Safety and effectiveness of the booster dose of mRNA COVID-19 vaccines in people with multiple sclerosis: A monocentric experience. Mult. Scler. Relat. Disord. 2023, 72, 104582. [Google Scholar] [CrossRef]
- Sedighi, B.; Haghdoost, A.; Afshar, P.J.; Abna, Z.; Bahmani, S.; Jafari, S. Multiple sclerosis and COVID-19: A retrospective study in Iran. PLoS ONE 2023, 18, e0283538. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Siadimas, A.; Roumpanis, S.; Fajardo, O.; Fitovski, K.; Jessop, N.; Whitley, L.; Rouzic, E.M.-L. Electronic health record data for assessing risk of hospitalization for COVID-19: Methodological considerations applied to multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 71, 104512. [Google Scholar] [CrossRef] [PubMed]
- Paybast, S.; Habibi, M.A.; Moghadasi, A.N. Characteristics and management of multiple sclerosis patients during the Omicron era: Is there a concern about the MS course in the face of the new variant of COVID-19? Neurol. Sci. 2022, 44, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef]
Variables | All Patients | COVID-19 | No COVID-19 | |
---|---|---|---|---|
(n = 352) | (n = 134) | (n = 218) | ||
Age (years) | Median (IQR) | 48.5 (38.9–57.8) | 45.1 (33.6–52.6) | 51.9 (41.8–60.0) |
Sex | F (%) | 240 (68.2) | 98 (73.1) | 142 (65.1) |
M (%) | 112 (31.8) | 36 (26.9) | 76 (34.9) | |
MS course | RRMS (%) | 282 (80.1) | 114 (85.1) | 168 (77.1) |
SPMS (%) | 32 (9.1) | 8 (6.0) | 24 (11.0) | |
PPMS (%) | 23 (6.5) | 7 (5.2) | 16 (7.3) | |
NMOSD (%) | 15 (4.3) | 5 (3.7) | 10 (4.6) | |
EDSS | Median (IQR) | 2.5 (2.0–4.0) | 2.0 (1.5–3.5) | 3.0 (2.0–4.0) |
Vaccination status | Yes (%) | 315 (89.5) | 82 (61.2) | 206 (94.5) |
No (%) | 37 (10.5) | 52 (38.8) | 12 (5.5) | |
DMT at vaccination | No therapy (%) | 41 (13.0) | ||
Injectables (%) | 33 (10.5) | |||
Other MAB (%) | 61 (19.4) | |||
Anti-CD20 (%) | 98 (31.1) | |||
S1P-r modulators (%) | 16 (5.1) | |||
Other oral DMTs (%) | 66 (21.1) | |||
Number of COVID-19 infections | 0 (%) | 218 (61.9) | 0 (0.0) | 218 (100.0) |
1 (%) | 124 (35.2) | 124 (92.5) | 0 (0.0) | |
2 (%) | 10 (2.8) | 10 (7.5) | 0 (0.0) |
Variables | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
Age | 0.96 | (0.95–0.98) | <0.001 | 0.98 | (0.96–1.00) | 0.059 | |
EDSS | 0.84 | (0.74–0.95) | 0.005 | 0.85 | (0.70–1.02) | 0.087 | |
Sex | M | - | - | - | - | - | - |
F | 1.46 | (0.91–2.34) | 0.119 | 1.26 | (0.73–2.16) | 0.403 | |
MS course | RRMS | - | - | - | - | - | - |
PMS | 0.56 | (0.30–1.06) | 0.075 | 1.01 | (0.42–2.41) | 0.983 | |
DMTs | Untreated/other DMTs | - | - | - | - | - | - |
Anti-CD20 | 1.50 | (0.94–2.40) | 0.091 | 2.26 | (1.28–4.00) | 0.005 | |
S1P-r modulators | 1.11 | (0.39–3.17) | 0.843 | 1.82 | (0.58–5.66) | 0.302 | |
SARS-CoV-2 vaccination | No | ||||||
Yes | 0.09 | (0.05–0.18) | <0.001 | 0.10 | (0.05–0.20) | <0.001 |
Variables | Mild COVID-19 | Severe COVID-19 | |
---|---|---|---|
(n = 129) | (n = 15) | ||
Age (years) | Median (IQR) | 44.3 (33.3–51.2) | 50.2 (39.2–57.5) |
Sex | F (%) | 93 (72.1) | 12 (80.0) |
M (%) | 36 (27.9) | 3 (20.0) | |
MS course | RRMS (%) | 112 (86.8) | 11 (73.3) |
SPMS (%) | 6 (4.7) | 2 (13.3) | |
PPMS (%) | 6 (4.7) | 1 (6.7) | |
Other (%) | 5 (3.9) | 1 (6.7) | |
EDSS | Median (IQR) | 2.0 (1.5–3.0) | 3.0 (2.1–4.8) |
DMT at time of infection | No therapy (%) | 18 (14.0) | 1 (6.7) |
Injectables (%) | 10 (7.8) | 0 (0.0) | |
Other MAB (%) | 30 (23.3) | 1 (6.7) | |
Anti-CD20 (%) | 45 (34.9) | 13 (86.7) | |
S1P-r modulators (%) | 5 (3.9) | 0 (0.0) | |
Other oral therapies (%) | 21 (16.3) | 0 (0.0) | |
Vaccination status at | Yes (%) | 86 (66.7) | 4 (26.7) |
time of infection | No (%) | 43 (33.3) | 11 (73.3) |
Time since vaccination (months) | median (IQR) | 3.30 (2.2–5.5) | 3.76 (2.9–5.1) |
Estimated variant | Alpha (%) | 22 (17.1) | 11 (73.3) |
Delta (%) | 17 (13.2) | 2 (13.3) | |
Omicron (%) | 90 (69.8) | 2 (13.3) | |
Monoclonal antibodies | Yes (%) | 23 (18.0) | 4 (27.0) |
(Sotrovimab) | No (%) | 106 (82.0) | 11 (73.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisler, J.J.; Disanto, G.; Sacco, R.; Zecca, C.; Gobbi, C. Influence of Disease Modifying Treatment, Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Vaccination on Coronavirus Disease 2019 Risk and Outcome in Multiple Sclerosis and Neuromyelitis Optica. J. Clin. Med. 2023, 12, 5551. https://doi.org/10.3390/jcm12175551
Eisler JJ, Disanto G, Sacco R, Zecca C, Gobbi C. Influence of Disease Modifying Treatment, Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Vaccination on Coronavirus Disease 2019 Risk and Outcome in Multiple Sclerosis and Neuromyelitis Optica. Journal of Clinical Medicine. 2023; 12(17):5551. https://doi.org/10.3390/jcm12175551
Chicago/Turabian StyleEisler, Jennifer Jessica, Giulio Disanto, Rosaria Sacco, Chiara Zecca, and Claudio Gobbi. 2023. "Influence of Disease Modifying Treatment, Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Vaccination on Coronavirus Disease 2019 Risk and Outcome in Multiple Sclerosis and Neuromyelitis Optica" Journal of Clinical Medicine 12, no. 17: 5551. https://doi.org/10.3390/jcm12175551
APA StyleEisler, J. J., Disanto, G., Sacco, R., Zecca, C., & Gobbi, C. (2023). Influence of Disease Modifying Treatment, Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Vaccination on Coronavirus Disease 2019 Risk and Outcome in Multiple Sclerosis and Neuromyelitis Optica. Journal of Clinical Medicine, 12(17), 5551. https://doi.org/10.3390/jcm12175551