Next Article in Journal
Use of Distal Tibial Cortical Bone Thickness and FRAX Score for Further Treatment Planning in Patients with Trimalleolar Ankle Fractures
Next Article in Special Issue
The Emerging Role of Icosapent Ethyl in Patients with Cardiovascular Disease: Mechanistic Insights and Future Applications
Previous Article in Journal
Normative Topographic Anterior and Posterior Corneal Astigmatism: Axis Distribution and Its Relations with Ocular and Biometric Parameters
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advances in Cardiovascular Pharmacology in Atherosclerotic-Related Therapeutic Areas: Addressing Patients’ Clinical Needs

by
Muntaser Omari
1 and
Mohammad Alkhalil
1,2,*
1
Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK
2
Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2023, 12(11), 3665; https://doi.org/10.3390/jcm12113665
Submission received: 3 May 2023 / Revised: 12 May 2023 / Accepted: 22 May 2023 / Published: 25 May 2023
Over the last three decades, a significant improvement has been achieved in reducing cardiovascular morbidity and mortality [1]. Nonetheless, one in five patients returns with a second event within 5 years despite being on the guideline-recommended optimal medical therapy [2]. This risk is widely recognized to be heterogeneous, and characterizing the atherosclerosis process would allow tailored therapy and precise intervention at an individual level, aiming to reduce cardiovascular residual risk. Recent advances in pharmacotherapy have enabled physicians to target the main atherosclerotic-related processes, namely lipid, thrombosis, inflammation, and subsequent heart failure [3,4].
Low-density lipoprotein cholesterol (LDL-c) is a direct cause in the development of atherosclerotic cardiovascular disease (ASCVD) [5]. Numerous processes are implicated in early atherogenesis, including endothelial dysfunction, shear-stress-related events, platelet activation and aggregation, lipoprotein oxidation, inflammatory cell chemotaxis, the formation of foam cells, and smooth muscle migration [6]. Importantly, the retention of apo-lipoprotein B particles is a key determinant for the initiation and propagation of atherosclerotic plaque [6]. Statins and, subsequently, other LDL-c-lowering treatments, such as ezetimibe, proprotein convertase subtilisin/kexin (PCSK) 9 inhibitors, and bempedoic acid, have demonstrated that lowering LDL-c results in improving clinical outcomes, irrespective of the mechanism of the drug used [2,7,8,9]. Whilst the magnitude of LDL-c reduction was associated with a decrease in cardiovascular risk, a legacy effect was also evident underscoring the benefits of early initiation and long-term exposure to low LDL-c [10].
On the other hand, high-density lipoprotein (HDL)-c-raising therapies did not improve patients’ clinical outcomes [11,12,13,14] This is despite evidence from epidemiological studies supporting the role of HDL-c in the development of atherosclerosis [15,16]. Beyond its cargo of cholesterol, HDL particles have other functions, such as efflux capacity, that may have a protective role when managing patients with ASCVD [17]. Future studies will provide further insights on whether cholesterol efflux capacity could be a potential therapeutic target for patients with ASCVD.
Data from cohort-based and Mendelian randomization studies have highlighted an association between elevated triglycerides and worse clinical outcomes [18,19,20,21]. However, fibrates, niacin, and, more recently, marine-derived omega-3 fatty acids were not consistent in demonstrating a reduction in cardiovascular adverse events in response to the hypotriglyceridemic effect [22,23,24,25]. Triglycerides are not atherogenic per se, but are transported on lipoprotein particles that are increasingly recognized to be associated with the development of atherosclerotic plaque [21,26]. Whilst lowering triglycerides was associated with a reduction in future cardiovascular events, this effect was only modest and likely derived from the clearance of atherogenic lipoprotein particles [27].
The formation of platelet-rich thrombi is the principal cause of coronary obstruction in segments with atherosclerotic disease. This is why antiplatelet drugs are the cornerstone in the treatment of cardiovascular diseases [28,29]. Aspirin was the first approved antiplatelet medication targeting the cyclooxygenase-1 pathway. It achieves maximum platelet inhibition within 2 h following a loading dose and inhibits aggregation in 50% of circulating platelets for at least five days [30]. P2Y12 receptor is the second target to inhibit platelet activation, and developing safe therapies to antagonize this receptor has been a key step in reducing thrombotic sequalae of acute atherosclerotic plaque rupture [31]. Potent P2Y12 antagonists, prasugrel and ticagrelor, have led to a reduction in ischemic events, but at the expense of increasing bleeding risk when compared with clopidogrel [32,33]. Although these drugs provide faster and more consistent platelet inhibition and reduce high-platelet reactivity when compared with clopidogrel [34], a significant proportion of patients remained with high-platelet reactivity, particularly those with diabetes or post-acute coronary syndrome [35]. Additionally, patients presenting with acute myocardial infarction are susceptible to a delayed onset of platelet inhibition related to poor absorption or the use of opioids that can cause further delays in antiplatelet effects [36,37]. Nonoral P2Y12 antagonists have been proposed to bridge this gap and provide optimal platelet inhibition. Both intravenous (cangrelor) and subcutaneous (selatogrel) agents produce a rapid onset of platelet inhibition [38,39]. However, their roles in day-to-day clinical practice are yet to be determined.
Targeting other platelet receptors, particularly glycoprotein (GP)IIb/IIIa, has also been assessed in large randomized clinical trials. The abundance of GPIIb/IIIa receptor on the platelet surface and its direct involvement in platelet signaling and binding with fibrinogen have made it an excellent target for platelet inhibition [40]. In fact, patients who received intracoronary tirofiban, a reversible inhibitor of GPIIbIIIa, sustained a smaller infarct size when compared to placebo [41]. However, major bleeding was the main caveat to the routine use of GPIIbIIIa inhibitor [42]. Protease-activated receptors (PAR) have emerged as another potential target to inhibit thrombin-mediated platelet activation [43]. Vorapaxar is an oral PAR1 antagonist that showed a significant reduction in cardiovascular events following ACS when compared to a placebo [44]. However, it was associated with an increased risk of bleeding, including intracranial bleeding. Different pharmacodynamics using slow and sustained platelet inhibition by targeting the PAR4 receptor may be a promising strategy of reducing platelet activation without increasing bleeding risk [45]. Clinical outcome data are anticipated which may support this hypothesis.
Targeting fibrin formation using factor Xa or XIa inhibitors was proposed to attenuate thrombosis without increasing bleeding risks. Unlike Xa, XIa only resides in the intrinsic pathway and could provide the right balance by reducing thrombotic risk without disrupting hemostasis [46]. Numerous Phase II studies have reported the safety of factor Xia inhibitor, with ongoing Phase III trials establishing its efficacy.
It has long been established that atherosclerosis is an inflammatory disease [3]. Immune cells, noncellular components such as interleukins and circulating microparticles, and, recently, the perivascular adipose tissue all contribute to this inflammatory role [47,48,49,50]. Aspirin and statins showed anti-inflammatory properties, quantified using highly sensitive (hs)-C-reactive protein, independently of their antiplatelet and cholesterol reduction properties, respectively [51,52].
The recent CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) provided the most compelling evidence to date on the inflammatory hypothesis of atherothrombosis by reducing the risk of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke by 15% in patients with previous myocardial infarction and a hs-CRP ≥ 2 mg/L [53]. This landmark study highlighted the dual diagnostic and therapeutic benefits of detecting and targeting high levels of residual systemic inflammation in secondary cardiovascular prevention [53].
Subsequently, colchicine showed incremental benefits when added to standard treatment in patients with stable and unstable coronary presentation [54,55]. Intriguingly, its benefits were more evident in patients with diabetes, with almost twice the absolute risk reduction compared with nondiabetic patients, highlighting the inflammatory nature of the disease [56,57]. Other emerging anti-inflammatory treatments targeting the interleukin-6 pathway may provide additional benefits in patients with ASCVD [58].
Collectively, the residual atherosclerotic risk is widely heterogeneous. Attention should be sharply focused on identifying patients who may benefit maximally from novel treatment. Such treatments may be too expensive or associated with significant side effects that could offset any potential benefits when administered unselectively to all populations [59]. For example, 12 months of dual-antiplatelet treatment using potent P2Y12 antagonists remains the standard treatment in patients post-acute myocardial infarction. Extending the duration of dual-antiplatelet treatment provided additional ischemic benefits but with increased bleeding risks. Alternative strategies that could reduce bleeding risks and maintaining ischemic protection would be ideal for CAD patients. Three approaches have shown promising results to mitigate the bleeding risk. These include (1) early aspirin discontinuation [60], (2) de-escalating antiplatelet treatment either unselectively or guided by genotyping or platelet function [61], or (3) the use of scoring systems to balance bleeding and ischemic risks [62]. Importantly, these approaches have not been compared head-to-head and recommending one strategy over another remains challenging, notwithstanding the importance of certain clinical factors such as age and dialysis that should be considered in the decision-making process when using dual-antiplatelet therapy [63,64]. A similar approach could be utilized when subjecting patients to lipid-lowering or anti-inflammatory treatments. The use of plaque imaging would provide a direct evaluation of atherosclerotic plaque and provide important insights into its composition alongside its inflammatory status [49,50,65,66,67,68] Patients with a propensity to develop lipid-rich plaque may be candidates for intensive lipid-lowering treatment. Similarly, those with highly inflammatory plaque could be subjected to anti-inflammatory drugs. This model would be more cost-effective and reduce potential side effects compared to the unselective approach. An alternative strategy is to use high-risk clinical features, such as previous coronary artery bypass graft or polyvascular disease, to identify high-risk patients who may be eligible for-long term novel antiatherosclerotic treatments [56,69,70].
The heterogeneity of atherosclerotic disease features, alongside the variations in individuals’ responses to currently available therapies, dictates a more comprehensive approach to understand and quantify the subject’s residual risk. Therefore, characterizing atherosclerotic disease and matching its features to targeted therapies may offer an opportunity to achieve more accurate intervention, a step closer toward precision medicine.

Author Contributions

Conceptualization, M.A.; methodology, M.A. and M.O.; resources, M.A.; writing—original draft preparation, M.A. and M.O.; writing—review and editing, M.A. and M.O.; supervision, M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
  2. Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Théroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
  3. Alkhalil, M. Mechanistic Insights to Target Atherosclerosis Residual Risk. Curr. Probl. Cardiol. 2021, 46, 100432. [Google Scholar] [CrossRef] [PubMed]
  4. Alkhalil, M.; Choudhury, R.P. Current concepts in atherosclerosis. Indian J. Thorac. Cardiovasc. Surg. 2018, 34, 198–205. [Google Scholar] [CrossRef]
  5. Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
  6. Williams, K.J.; Tabas, I. The Response-to-Retention Hypothesis of Early Atherogenesis. Arter. Thromb. Vasc. Biol. 1995, 15, 551–561. [Google Scholar] [CrossRef]
  7. Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
  8. Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
  9. Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef]
  10. O’donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.C.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; et al. Long-Term Evolocumab in Patients with Established Atherosclerotic Cardiovascular Disease. Circulation 2022, 146, 1109–1119. [Google Scholar] [CrossRef]
  11. Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef]
  12. Fayad, Z.A.; Mani, V.; Woodward, M.; Kallend, D.; Abt, M.; Burgess, T.; Fuster, V.; Ballantyne, C.M.; Stein, E.A.; Tardif, J.-C.; et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): A randomised clinical trial. Lancet 2011, 378, 1547–1559. [Google Scholar] [CrossRef]
  13. Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef]
  14. Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
  15. Miller, G.; Miller, N. Plasma-High-Density-Lipoprotein Concentration and Development of Ischæmic Heart-Disease. Lancet 1975, 305, 16–19. [Google Scholar] [CrossRef]
  16. The Emerging Risk Factors Collaboration; Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009, 302, 1993–2000. [Google Scholar]
  17. von Eckardstein, A.; Nordestgaard, B.G.; Remaley, A.T.; Catapano, A.L. High-density lipoprotein revisited: Biological functions and clinical relevance. Eur. Heart J. 2023, 44, 1394–1407. [Google Scholar] [CrossRef]
  18. Triglyceride Coronary Disease Genetics Consortium; Emerging Risk Factors Collaboration; Sarwar, N.; Sandhu, M.S.; Ricketts, S.L.; Butterworth, A.S.; Di Angelantonio, E.; Boekholdt, S.M.; Ouwehand, W.; Watkins, H.; et al. Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies. Lancet 2010, 375, 1634–1639. [Google Scholar] [CrossRef]
  19. Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjærg-Hansen, A. Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart Disease, and Death in Men and Women. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef]
  20. Varbo, A.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013, 128, 1298–1309. [Google Scholar] [CrossRef]
  21. Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G. Remnant Cholesterol as a Causal Risk Factor for Ischemic Heart Disease. J. Am. Coll. Cardiol. 2013, 61, 427–436. [Google Scholar] [CrossRef] [PubMed]
  22. Das Pradhan, A.; Glynn, R.J.; Fruchart, J.C.; MacFadyen, J.G.; Zaharris, E.S.; Everett, B.M.; Campbell, S.E.; Oshima, R.; Amarenco, P.; Blom, D.J.; et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N. Engl. J. Med. 2022, 387, 1923–1934. [Google Scholar] [CrossRef]
  23. HPS2-Thrive Collaborative Group; Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar] [PubMed]
  24. Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268. [Google Scholar] [CrossRef] [PubMed]
  25. Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
  26. Wadstrom, B.N.; Pedersen, K.M.; Wulff, A.B.; Nordestgaard, B.G. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023, 44, 1432–1445. [Google Scholar] [CrossRef]
  27. Marston, N.A.; Giugliano, R.P.; Im, K.; Silverman, M.G.; O’donoghue, M.L.; Wiviott, S.D.; Ference, B.A.; Sabatine, M.S. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation 2019, 140, 1308–1317. [Google Scholar] [CrossRef]
  28. Alkhalil, M.; Džavík, V.; Bhatt, D.L.; Mehran, R.; Mehta, S.R. Antiplatelet Therapy in Patients Undergoing Elective Percutaneous Coronary Intervention. Curr. Cardiol. Rep. 2022, 24, 277–293. [Google Scholar] [CrossRef]
  29. Alkhalil, M.; Kuzemczak, M.; Bell, A.; Stern, S.; Welsford, M.; Cantor, W.J.; Goodman, S.G. A practical approach to prescribing antiplatelet therapy in patients with acute coronary syndromes. Can. Med. Assoc. J. 2022, 194, E205–E215. [Google Scholar] [CrossRef]
  30. Layne, K.; Ferro, A. Antiplatelet Therapy in Acute Coronary Syndrome. Eur. Cardiol. 2017, 12, 33–37. [Google Scholar] [CrossRef]
  31. Mehta, S.R.; Yusuf, S.; Peters, R.J.; Bertrand, M.E.; Lewis, B.S.; Natarajan, M.K.; Malmberg, K.; Rupprecht, H.; Zhao, F.; Chrolavicius, S.; et al. Unstable angina to prevent Recurrent Events trial I. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: The PCI-CURE study. Lancet 2001, 358, 527–533. [Google Scholar] [CrossRef]
  32. Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al. Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [Google Scholar] [CrossRef]
  33. Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef]
  34. Thomas, M.R.; Storey, R.F. Clinical significance of residual platelet reactivity in patients treated with platelet P2Y12 inhibitors. Vasc. Pharmacol. 2016, 84, 25–27. [Google Scholar] [CrossRef]
  35. Winter, M.-P.; Grove, E.L.; De Caterina, R.; Gorog, D.A.; Ahrens, I.; Geisler, T.; Gurbel, P.A.; Tantry, U.; Navarese, E.; Siller-Matula, J.M. Advocating cardiovascular precision medicine with P2Y12 receptor inhibitors. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 221–234. [Google Scholar] [CrossRef]
  36. Alexopoulos, D.; Xanthopoulou, I.; Gkizas, V.; Kassimis, G.; Theodoropoulos, K.C.; Makris, G.; Koutsogiannis, N.; Damelou, A.; Tsigkas, G.; Davlouros, P.; et al. Randomized Assessment of Ticagrelor Versus Prasugrel Antiplatelet Effects in Patients with ST-Segment–Elevation Myocardial Infarction. Circ. Cardiovasc. Interv. 2012, 5, 797–804. [Google Scholar] [CrossRef]
  37. Silvain, J.; Storey, R.F.; Cayla, G.; Esteve, J.B.; Dillinger, J.G.; Rousseau, H.; Tsatsaris, A.; Baradat, C.; Salhi, N.; Hamm, C.W.; et al. P2Y12 receptor inhibition and effect of morphine in patients undergoing primary PCI for ST-segment elevation myocardial infarction. Priv. Atl. Study Thromb Haemost. 2016, 116, 369–378. [Google Scholar] [CrossRef]
  38. Bhatt, D.L.; Stone, G.W.; Mahaffey, K.W.; Gibson, C.M.; Steg, P.G.; Hamm, C.W.; Price, M.J.; Leonardi, S.; Gallup, D.; Bramucci, E.; et al. Effect of Platelet Inhibition with Cangrelor during PCI on Ischemic Events. N. Engl. J. Med. 2013, 368, 1303–1313. [Google Scholar] [CrossRef]
  39. Sinnaeve, P.; Fahrni, G.; Schelfaut, D.; Spirito, A.; Mueller, C.; Frenoux, J.-M.; Hmissi, A.; Bernaud, C.; Ufer, M.; Moccetti, T.; et al. Subcutaneous Selatogrel Inhibits Platelet Aggregation in Patients with Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2020, 75, 2588–2597. [Google Scholar] [CrossRef]
  40. Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling During Platelet Adhesion and Activation. Arter. Thromb. Vasc. Biol. 2010, 30, 2341–2349. [Google Scholar] [CrossRef]
  41. Stone, G.W.; Maehara, A.; Witzenbichler, B.; Godlewski, J.; Parise, H.; Dambrink, J.-H.E.; Ochala, A.; Carlton, T.W.; Cristea, E.; Wolff, S.D.; et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: The INFUSE-AMI randomized trial. JAMA 2012, 307, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
  42. De Luca, G.; Navarese, E.P.; Cassetti, E.; Verdoia, M.; Suryapranata, H. Meta-Analysis of Randomized Trials of Glycoprotein IIb/IIIa Inhibitors in High-Risk Acute Coronary Syndromes Patients Undergoing Invasive Strategy. Am. J. Cardiol. 2011, 107, 198–203. [Google Scholar] [CrossRef] [PubMed]
  43. Brass, L.F. Thrombin and platelet activation. Chest 2003, 124, 18S–25S. [Google Scholar] [CrossRef] [PubMed]
  44. Tricoci, P.; Lokhnygina, Y.; Huang, Z.; Van de Werf, F.; Cornel, J.H.; Chen, E.; Wallentin, L.; Held, C.; Aylward, P.E.; Moliterno, D.J.; et al. Vorapaxar with or without clopidogrel after non–ST-segment elevation acute coronary syndromes: Results from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome trial. Am. Heart J. 2014, 168, 869–877.e1. [Google Scholar] [CrossRef] [PubMed]
  45. Wilson, S.J.; Ismat, F.A.; Wang, Z.; Cerra, M.; Narayan, H.; Raftis, J.; Gray, T.J.; Connell, S.; Garonzik, S.; Ma, X.; et al. PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation. Arter. Thromb. Vasc. Biol. 2018, 38, 448–456. [Google Scholar] [CrossRef]
  46. Weitz, J.I.; Eikelboom, J.W. What Is the Future of Factor XI Inhibitors? Circulation 2022, 146, 1899–1902. [Google Scholar] [CrossRef]
  47. Alkhalil, M.; Kearney, A.; Hegarty, M.; Stewart, C.; Devlin, P.; Owens, C.G.; Spence, M.S. Eosinopenia as an Adverse Marker of Clinical Outcomes in Patients Presenting with Acute Myocardial Infarction. Am. J. Med. 2019, 132, e827–e834. [Google Scholar] [CrossRef]
  48. Akbar, N.; Braithwaite, A.T.; Corr, E.M.; Koelwyn, G.J.; van Solingen, C.; Cochain, C.; Saliba, A.E.; Corbin, A.; Pezzolla, D.; Moller, J.M.; et al. Rapid neutrophil mobilisation by VCAM-1+ endothelial extracellular vesicles. Cardiovasc Res. 2022, 119, 236–251. [Google Scholar] [CrossRef]
  49. Alkhalil, M.; Edmond, E.; Edgar, L.; Digby, J.E.; Omar, O.; Robson, M.D.; Choudhury, R.P. The relationship of perivascular adipose tissue and atherosclerosis in the aorta and carotid arteries, determined by magnetic resonance imaging. Diabetes Vasc. Dis. Res. 2018, 15, 286–293. [Google Scholar] [CrossRef]
  50. Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt, C.E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
  51. Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef]
  52. Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef]
  53. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
  54. Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; Xu, X.F.; Lenderink, T.; Latchem, D.; Hoogslag, P.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
  55. Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
  56. Kuzemczak, M.; Ibrahem, A.; Alkhalil, M. Colchicine in Patients with Coronary Artery Disease with or Without Diabetes Mellitus: A Meta-analysis of Randomized Clinical Trials. Clin. Drug Investig. 2021, 41, 667–674. [Google Scholar] [CrossRef]
  57. Edgar, L.; Akbar, N.; Braithwaite, A.T.; Krausgruber, T.; Gallart-Ayala, H.; Bailey, J.; Corbin, A.L.; Khoyratty, T.E.; Chai, J.T.; Alkhalil, M.; et al. Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation 2021, 144, 961–982. [Google Scholar] [CrossRef]
  58. Ridker, P.M.; Rane, M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ. Res. 2021, 128, 1728–1746. [Google Scholar] [CrossRef]
  59. Alkhalil, M. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors, Reality or Dream in Managing Patients with Cardiovascular Disease. Curr. Drug Metab. 2019, 20, 72–82. [Google Scholar] [CrossRef]
  60. O’Donoghue, M.L.; Murphy, S.A.; Sabatine, M.S. The Safety and Efficacy of Aspirin Discontinuation on a Background of a P2Y(12) Inhibitor in Patients After Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Circulation 2020, 142, 538–545. [Google Scholar] [CrossRef]
  61. Galli, M.; Benenati, S.; Capodanno, D.; Franchi, F.; Rollini, F.; D’Amario, D.; Porto, I.; Angiolillo, D.J. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: A systematic review and meta-analysis. Lancet 2021, 397, 1470–1483. [Google Scholar] [CrossRef] [PubMed]
  62. Costa, F.; Van Klaveren, D.; Feres, F.; James, S.; Räber, L.; Pilgrim, T.; Hong, M.-K.; Kim, H.-S.; Colombo, A.; Steg, P.G.; et al. Dual Antiplatelet Therapy Duration Based on Ischemic and Bleeding Risks After Coronary Stenting. J. Am. Coll. Cardiol. 2019, 73, 741–754. [Google Scholar] [CrossRef] [PubMed]
  63. Gimbel, M.; Qaderdan, K.; Willemsen, L.; Hermanides, R.; Bergmeijer, T.; de Vrey, E.; Heestermans, T.; Gin, M.T.J.; Waalewijn, R.; Hofma, S.; et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): The randomised, open-label, non-inferiority trial. Lancet 2020, 395, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
  64. Ponchia, P.I.; Ahmed, R.; Farag, M.; Alkhalil, M. Antiplatelet Therapy in End-stage Renal Disease Patients on Maintenance Dialysis: A State-of-the-art Review. Cardiovasc. Drugs Ther. 2022, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
  65. Alkhalil, M.; Chai, J.T.; Choudhury, R.P. Plaque imaging to refine indications for emerging lipid-lowering drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 58–67. [Google Scholar] [CrossRef] [PubMed]
  66. Alkhalil, M.; Biasiolli, L.; Chai, J.T.; Galassi, F.; Li, L.; Darby, C.; Halliday, A.; Hands, L.; Magee, T.; Perkins, J.; et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy. PLoS ONE 2017, 12, e0181668. [Google Scholar] [CrossRef]
  67. Alkhalil, M.; Biasiolli, L.; Akbar, N.; Galassi, F.; Chai, J.T.; Robson, M.D.; Choudhury, R.P. T2 mapping MRI technique quantifies carotid plaque lipid, and its depletion after statin initiation, following acute myocardial infarction. Atherosclerosis 2018, 279, 100–106. [Google Scholar] [CrossRef]
  68. Chai, J.T.; Biasiolli, L.; Li, L.; Alkhalil, M.; Galassi, F.; Darby, C.; Halliday, A.W.; Hands, L.; Magee, T.; Perkins, J.; et al. Quantification of Lipid-Rich Core in Carotid Atherosclerosis Using Magnetic Resonance T(2) Mapping: Relation to Clinical Presentation. JACC Cardiovasc. Imaging 2017, 10, 747–756. [Google Scholar] [CrossRef]
  69. Alkhalil, M.; Kuzemczak, M.; Whitehead, N.; Kavvouras, C.; Džavík, V. Meta-Analysis of Intensive Lipid-Lowering Therapy in Patients with Polyvascular Disease. J. Am. Heart Assoc. 2021, 10, e017948. [Google Scholar] [CrossRef]
  70. Alkhalil, M. Effects of intensive lipid-lowering therapy on mortality after coronary bypass surgery: A meta-analysis of 7 randomised trials. Atherosclerosis 2020, 293, 75–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Omari, M.; Alkhalil, M. Advances in Cardiovascular Pharmacology in Atherosclerotic-Related Therapeutic Areas: Addressing Patients’ Clinical Needs. J. Clin. Med. 2023, 12, 3665. https://doi.org/10.3390/jcm12113665

AMA Style

Omari M, Alkhalil M. Advances in Cardiovascular Pharmacology in Atherosclerotic-Related Therapeutic Areas: Addressing Patients’ Clinical Needs. Journal of Clinical Medicine. 2023; 12(11):3665. https://doi.org/10.3390/jcm12113665

Chicago/Turabian Style

Omari, Muntaser, and Mohammad Alkhalil. 2023. "Advances in Cardiovascular Pharmacology in Atherosclerotic-Related Therapeutic Areas: Addressing Patients’ Clinical Needs" Journal of Clinical Medicine 12, no. 11: 3665. https://doi.org/10.3390/jcm12113665

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop