Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, A.Z.; Kopp, J.B. Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Belingheri, M.; Moroni, G.; Messa, P. Available and incoming therapies for idiopathic focal and segmental glomerulosclerosis in adults. J. Nephrol. 2018, 31, 37–45. [Google Scholar] [PubMed]
- KDIGO. Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar]
- Dinan, T.G.; Cryan, J.F. Gut-brain axis in 2016: Brain-gut-microbiota axis—Mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 69–70. [Google Scholar]
- Karbach, S.H.; Schönfelder, T.; Brandão, I.; Wilms, E.; Hörmann, N.; Jäckel, S.; Schüler, R.; Finger, S.; Knorr, M.; Lagrange, J.; et al. Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. J. Am. Heart Assoc. 2016, 5, e003698. [Google Scholar] [CrossRef]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut-kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Anders, H.J. 2019 Update in basic kidney research: Microbiota in chronic kidney disease, controlling autoimmunity, kidney inflammation and modelling the glomerular filtration barrier. Nephrol. Dial. Transplant. 2020, 35, 4–9. [Google Scholar] [CrossRef]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. S2), S1–S63. [Google Scholar] [CrossRef]
- Meijers, B.K.; De Preter, V.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010, 25, 219–224. [Google Scholar] [CrossRef]
- Sirich, T.L.; Plummer, N.S.; Gardner, C.D.; Hostetter, T.H.; Meyer, T.W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1603–1610. [Google Scholar] [PubMed]
- Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118 (Suppl. S1), S23–S31. [Google Scholar] [PubMed]
- Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta 2020, 503, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J.; Klotman, M.E. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar]
- De Vriese, A.S.; Wetzels, J.F.; Glassock, R.J.; Sethi, S.; Fervenza, F.C. Therapeutic trials in adult FSGS: Lessons learned and the road forward. Nat. Rev. Nephrol. 2021, 17, 619–630. [Google Scholar]
- Sakai, K.; Morito, N.; Usui, J.; Hagiwara, M.; Hiwatashi, A.; Fukuda, K.; Nanmoku, T.; Toda, T.; Matsui, N.; Nagata, M.; et al. Focal segmental glomerulosclerosis as a complication of hepatitis B virus infection. Nephrol. Dial. Transplant. 2011, 26, 371–373. [Google Scholar]
- Sakallioglu, O.; Gok, F.; Kalman, S.; Kurekci, A.E.; Gunhan, O.; Gokcay, E. Hepatitis B complicated focal segmental glomerulosclerosis. J. Nephrol. 2005, 18, 433–435. [Google Scholar]
- Khoruts, A.; Sadowsky, M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 508–516. [Google Scholar] [CrossRef]
- Eriksen, A.K.; Brunius, C.; Mazidi, M.; Hellström, P.M.; Risérus, U.; Iversen, K.N.; Fristedt, R.; Sun, L.; Huang, Y.; Nørskov, N.P.; et al. Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: A randomized crossover trial. Am. J. Clin. Nutr. 2020, 111, 864–876. [Google Scholar] [CrossRef]
- Fabersani, E.; Portune, K.; Campillo, I.; López-Almela, I.; la Paz, S.M.D.; Romaní-Pérez, M.; Benítez-Páez, A.; Sanz, Y. Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Sci. Rep. 2021, 11, 11788. [Google Scholar]
- Wu, I.W.; Gao, S.S.; Chou, H.C.; Yang, H.Y.; Chang, L.C.; Kuo, Y.L.; Dinh, M.C.V.; Chung, W.H.; Yang, C.W.; Lai, H.C.; et al. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics 2020, 10, 5398–5411. [Google Scholar] [PubMed]
- Tett, A.; Pasolli, E.; Masetti, G.; Ercolini, D.; Segata, N. Prevotella diversity, niches and interactions with the human host. Nat. Rev. Microbiol. 2021, 19, 585–599. [Google Scholar] [PubMed]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [PubMed]
- Wu, I.W.; Lin, C.Y.; Chang, L.C.; Lee, C.C.; Chiu, C.Y.; Hsu, H.J.; Sun, C.Y.; Chen, Y.C.; Kuo, Y.L.; Yang, C.W.; et al. Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. Int. J. Biol. Sci. 2020, 16, 420–434. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Q.; Yan, S.; Yang, Y.; Yan, H.; Li, T.; Wang, L.; Gao, X.; Li, A.; Ding, S. Gut Microbiome Alterations in Patients With Carotid Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 739093. [Google Scholar]
- Dziarski, R.; Park, S.Y.; Kashyap, D.R.; Dowd, S.E.; Gupta, D. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice. PLoS ONE 2016, 11, e0146162. [Google Scholar] [CrossRef]
- Liang, Q.; Chiu, J.; Chen, Y.; Huang, Y.; Higashimori, A.; Fang, J.; Brim, H.; Ashktorab, H.; Ng, S.C.; Ng, S.S.M.; et al. Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clin. Cancer Res. 2017, 23, 2061–2070. [Google Scholar]
- Zhao, J.; Bai, M.; Yang, X.; Wang, Y.; Li, R.; Sun, S. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: The first case reports. Ren. Fail. 2021, 43, 928–933. [Google Scholar]
- Zhi, W.; Song, W.; Abdi Saed, Y.; Wang, Y.; Li, Y. Fecal Capsule as a Therapeutic Strategy in IgA Nephropathy: A Brief Report. Front. Med. 2022, 9, 1408. [Google Scholar]
Stage | Urine Protein (g/24 h) | Scr (umol/L) | Ccr (mL/min) | TG (mmol/L) | CHO (mmol/L) | PA (mg/L) |
---|---|---|---|---|---|---|
Before FMT | 0.42 | 131.4 | 44.66 | 1.95 | 5.22 | 189.1 |
After FMT | 0.29 | 122.5 | 47.9 | 1.51 | 4.98 | 305.8 |
One month after FMT | 0.26 | 118 | 49.73 | 1.13 | 4.32 | 278.6 |
Two months after FMT | 0.29 | 117.2 | 50.07 | 2.37 | 6.46 | 276.5 |
Three months after FMT | 0.24 | 121.7 | 48.22 | 2.28 | 6.28 | 262.6 |
Stage | lym | CD3% | CD3 | CD4% | CD4 | CD8% | CD8 | CD4/CD8 | B% | B | NK% | NK |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before FMT | 1984 | 69.73 | 1383.44 | 51.33 | 1018.39 | 14.63 | 290.26 | 3.51 | 16.74 | 332 | 14.22 | 282 |
After FMT | 1827 | 69.23 | 1265.00 | 49.57 | 906.00 | 16.07 | 294.00 | 3.08 | 17.29 | 316 | 12.66 | 231 |
One month after FMT | 1899 | 67.86 | 1289.00 | 49.49 | 940.00 | 14.46 | 275.00 | 3.42 | 17.69 | 321 | 11.76 | 213 |
Three months after FMT | 2178 | 74.07 | 1614.00 | 54.73 | 1192.00 | 16.56 | 361.00 | 3.30 | 16.84 | 410 | 8.81 | 214 |
Stage | IL-5 | IL-4 | IL-2 | IL-10 | IFN-α | IL-1β | IL-12 P70 | IL-8 | IL-17 | IL-6 | IFN-γ | TNF-α |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before FMT | 3.401 | 0.096 | 0.824 | 0.17 | 0.005 | 9.637 | 0.668 | 89.38 | 1.956 | 3.065 | 31.442 | 31.71 |
After FMT | 1.835 | 0.026 | 0.052 | 0.85 | 0.677 | 1.397 | 0.179 | 104.75 | 0.841 | 4.852 | 5.837 | 23.742 |
One month after FMT | 1.835 | 0.155 | 0.052 | 0.104 | 0.434 | 0.981 | 0.331 | 86.40 | 1.956 | 3.065 | 24.297 | 22.178 |
Three months after FMT | 4.861 | 0.118 | 2.031 | 1.031 | 1.234 | 0.63 | 0.374 | 92.14 | 1.602 | 3.612 | 0 | 56.598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, W.; Yuan, X.; Song, W.; Jin, G.; Li, Y. Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report. J. Clin. Med. 2022, 11, 6700. https://doi.org/10.3390/jcm11226700
Zhi W, Yuan X, Song W, Jin G, Li Y. Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report. Journal of Clinical Medicine. 2022; 11(22):6700. https://doi.org/10.3390/jcm11226700
Chicago/Turabian StyleZhi, Wenqiang, Xiaoli Yuan, Wenzhu Song, Guorong Jin, and Yafeng Li. 2022. "Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report" Journal of Clinical Medicine 11, no. 22: 6700. https://doi.org/10.3390/jcm11226700
APA StyleZhi, W., Yuan, X., Song, W., Jin, G., & Li, Y. (2022). Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report. Journal of Clinical Medicine, 11(22), 6700. https://doi.org/10.3390/jcm11226700