Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients
2.2. IOP Measurement
2.3. Central Corneal Thickness and Axial Eye Length
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison between TPA and ICP IOP Measurements
3.3. Correlation between TCP and TPA, Correlation between CCT, AL and IOP Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Acta Ophthalmol. 2002, 120, 1268–1279. [Google Scholar]
- Kass, M.A.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Acta Ophthalmol. 2002, 120, 701–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E. Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: The Early Manifest Glaucoma Trial. Acta Ophthalmol. Scand. 2003, 121, 48–56. [Google Scholar]
- Asrani, S.; Zeimer, R.; Wilensky, J.; Gieser, D.; Vitale, S.; Lindenmuth, K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J. Glaucoma 2000, 9, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, J. Intraocular pressure fluctuation: An independent risk factor for glaucoma? Acta Ophthalmol. 2007, 125, 1124–1125. [Google Scholar] [CrossRef]
- Caprioli, J.; Coleman, A.L. Intraocular pressure fluctuation: A risk factor for visual field progression at low intraocular pressures in the Advanced Glaucoma Intervention Study. Ophthalmology 2008, 115, 1123–1129. [Google Scholar] [CrossRef]
- Tarkkanen, A.; Leikola, J. Postural variations of the intraocular pressure as measured with the Mackay-Marg tonometer. Acta Ophthalmol. 1967, 45, 569–575. [Google Scholar] [CrossRef]
- Jain, M.R.; Marmion, V.J. Rapid pneumatic and Mackey-Marg applanation tonometry to evaluate the postural effect on intraocular pressure. Br. J. Ophthalmol. 1976, 60, 687–693. [Google Scholar] [CrossRef] [Green Version]
- De Bernardo, M.; Borrelli, M.; Cembalo, G.; Rosa, N. Intraocular Pressure Measurements in Standing Position with a Rebound Tonometer. Med. 2019, 55, 701. [Google Scholar] [CrossRef] [Green Version]
- Whitacre, M.M.; Stein, R. Sources of error with use of Goldmann-type tonometers. Surv. Ophthalmol. 1993, 38, 1–30. [Google Scholar] [CrossRef]
- Schweier, C.; Hanson, J.V.M.; Funk, J.; Töteberg-Harms, M. Repeatability of intraocular pressure measurements with Icare PRO rebound, Tono-Pen AVIA, and Goldmann tonometers in sitting and reclining positions. BMC Ophthalmol. 2013, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Rosa, N.; De Bernardo, M.; Borrelli, M.; Filosa, M.L.; Lanza, M. Effect of oxybuprocaine eye drops on corneal volume and thickness measurements. Optom. Vis. Sci. 2011, 88, 640–644. [Google Scholar] [CrossRef]
- Kontiola, A.I. A new induction-based impact method for measuring intraocular pressure. Acta Ophthalmol. 2000, 78, 142–145. [Google Scholar] [CrossRef]
- De Bernardo, M.; Salerno, G.; Conretta, P.; Rosa, N. Axial Lenght Shortening After Cataract Surgery: New Approach to Solve the Question. Transl. Vis. Sci. Technol. 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- De Bernardo, M.; Cornetta, P.; Marotta, G.; Salerno, G.; De Pascale, I.; Rosa, N. Measurement of corneal thickness using Pentacam HR versus Nidek CEM-530 specular microscopy. J. Int. Med. Res. 2020, 48, 300060519892385. [Google Scholar] [CrossRef]
- Lee, T.E.; Yoo, C.; Kim, Y.Y. Effects of Different Sleeping Postures on Intraocular Pressure and Ocular Perfusion Pressure in Healthy Young Subjects. Ophthalmology 2013, 120, 1565–1570. [Google Scholar] [CrossRef]
- Barkana, Y. Postural Change in Intraocular Pressure: A Comparison of Measurement with a Goldmann Tonometer, Tonopen XL, Pneumatonometer, and HA-2. J. Glaucoma 2014, 23, e23–e28. [Google Scholar] [CrossRef]
- Huang, R.; Ge, J.; Chen, G.; Gao, X.; Laties, A.M.; Zhang, X. Four Measures of Intraocular Pressure Fluctuation: Which Correlates Most Optimally with Actual Office-hour Readings? J. Glaucoma 2015, 24, 550–555. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoo, C.; Jung, J.H.; Hwang, Y.H.; Kim, Y.Y. The effect of lateral decubitus position on intraocular pressure in healthy young subjects. Acta. Ophthalmol. 2012, 90, e68–e72. [Google Scholar] [CrossRef]
- Fogagnolo, P.; Orzalesi, N.; Ferreras, A.; Rossetti, L. The circadian curve of intraocular pressure: Can we estimate its characteristics during office hours? Investig. Ophthalmol. Vis. Sci. 2009, 50, 2209–2215. [Google Scholar] [CrossRef]
- Moster, S.J.; Fakhraie, G.; Venketesh, R.; Moster, M.L.; Zhao, Y.; Moster, M.R. Relationship of central corneal thickness to postural IOP changes in patients with and without glaucoma in southern India. Int. Ophthalmol. 2012, 32, 307–311. [Google Scholar] [CrossRef]
- Barkana, Y.; Gutfreund, S. Measurement of the difference in intraocular pressure between the sitting and lying body positions in healthy subjects: Direct comparison of the Icare Pro with the Goldmann applanation tonometer, Pneumatonometer and Tonopen XL. Clin. Exp. Ophthalmol. 2014, 42, 608–614. [Google Scholar] [CrossRef]
- Nakakura, S.; Mori, E.; Yamamoto, M.; Tsushima, Y.; Tabuchi, H.; Kiuchi, Y. Intradevice and Interdevice Agreement Between a Rebound Tonometer, Icare PRO, and the Tonopen XL and Kowa Hand-held Applanation Tonometer When Used in the Sitting and Supine Position. J. Glaucoma 2015, 24, 515–521. [Google Scholar] [CrossRef]
- Lee, T.E.; Yoo, C.; Hwang, J.Y.; Lin, S.; Kim, Y.Y. Comparison of Intraocular Pressure Measurements between Icare Pro Rebound Tonometer and Tono-Pen XL Tonometer in Supine and Lateral Decubitus Body Positions. Curr. Eye. Res. 2015, 40, 923–929. [Google Scholar] [CrossRef]
- Smith, T.J.; Lewis, J. Effect of inverted body position intraocular pressure. Am. J. Ophthalmol. 1985, 99, 617–618. [Google Scholar] [CrossRef]
- Malihi, M.; Sit, A.J. Effect of head and body position on intraocular pressure. Ophthalmology 2012, 119, 987–991. [Google Scholar] [CrossRef]
- Sultan, M.; Blondeau, P. Episcleral venous pressure in younger and older subjects in the sitting and supine positions. J. Glaucoma 2003, 12, 370–373. [Google Scholar] [CrossRef]
- Blondeau, P.; Tetrault, J.P.; Papamarkakis, C. Diurnal variation of episcleral venous pressure in healthy patients: A pilot study. J. Glaucoma 2001, 10, 18–24. [Google Scholar] [CrossRef]
- Friberg, T.R.; Sanborn, G.; Weinreb, R.N. Intraocular and episcleral venous pressure increase during inverted posture. Am. J. Ophthalmol. 1987, 103, 523–526. [Google Scholar] [CrossRef]
- Cowley, A.W.; Franchini, K.G. Neurogenic control of blood vessels. In Primer on the Autonomic Nervous System; Robertson, D., Low, P.A., Polinsky, R.J., Eds.; Academic Press: New York, NY, USA, 1996; pp. 49–55. [Google Scholar]
- Hayreh, S.S. Factors influencing blood flow in the optic nerve head. J. Glaucoma 1997, 6, 412–425. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Salerno, G.; Gioia, M.; Capasso, L.; Russillo, M.C.; Picillo, M.; Erro, R.; Amboni, M.; Barone, P.; Rosa, N.; et al. Intraocular pressure and choroidal thickness postural changes in multiple system atrophy and Parkinson’s disease. Sci. Rep. 2021, 11, 8936. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Cornetta, P.; Marotta, G.; Rosa, N. Corneal biomechanical parameters in pellucid marginal degeneration. J. Curr. Ophthalmol. 2018, 30, 280. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.; Lanza, M.; De Bernardo, M.; Signoriello, G.; Chiodini, P. Relationship Between Corneal Hysteresis and Corneal Resistance Factor with Other Ocular Parameters. Semin. Ophthalmol. 2015, 30, 335–339. [Google Scholar] [CrossRef]
- De Bernardo, M.; Rosa, N. Intraocular pressure after LASEK. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 2009–2010. [Google Scholar] [CrossRef]
- De Bernardo, M.; Vitiello, L.; Abbinante, G.; De Pascale, I.; Capasso, L.; Marotta, G.; Rosa, N. Comparison between two devices in the detection of corneal thickness changes after cataract surgery. Sci. Rep. 2021, 11, 6709. [Google Scholar] [CrossRef]
- Chatterjee, A.; Shah, S.; Bessant, D.A.; Naroo, S.A.; Doyle, S.J. Reduction in intraocular pressure after excimer laser photorefractive keratectomy. Correlation with pretreatment myopia. Ophthalmology 1997, 104, 355–359. [Google Scholar] [CrossRef]
- De Bernardo, M.; Capasso, L.; Caliendo, L.; Vosa, Y.; Rosa, N. Intraocular Pressure Evaluation after Myopic Refractive Surgery: A Comparison of Methods in 121 Eyes. Semin. Ophthalmol. 2016, 31, 233–242. [Google Scholar] [CrossRef]
Sitting | Supine | Standing 1 | Standing 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ICP | TPA | Δ | ICP | TPA | Δ | ICP | TPA | Δ | ICP | TPA | Δ | |
Mean | 14.97 | 14.34 | 0.57 | 16.58 | 15.61 | 0.93 | 14.45 | 14.03 | 0.37 | 15.70 | 14.88 | 0.73 |
CI 95% | [14.30; 15.65] | [13.57; 15.12] | [0.03; 1.12] | [15.88; 17.30] | [14.75; 16.47] | [0.29; 1.58] | [13.83; 15.07] | [13.31; 14.75] | [−0.13; 0.88] | [14.94; 16.45] | [14.04; 15.71] | [0.20; 1.24] |
SD | 2.71 | 3.10 | 2.10 | 2.83 | 3.44 | 2.49 | 2.49 | 2.89 | 1.96 | 3.04 | 3.36 | 2.03 |
Min | 8.60 | 8.00 | −3.80 | 9.10 | 10.00 | −4.50 | 8.30 | 9.00 | −5.20 | 8.50 | 9.00 | −4.50 |
Max | 22.80 | 22.00 | 6.60 | 23.90 | 22.00 | 7.10 | 20.40 | 22.00 | 5.00 | 23.00 | 23.00 | 6.40 |
pvalue | - | - | 0.019 | - | - | 0.003 | - | - | 0.102 | - | - | 0.002 |
Difference between ICP and TPA | ||||
---|---|---|---|---|
Sitting | Supine | Standing 1 | Standing 2 | |
CCT | −0.084 | −0.084 | −0.166 | −0.083 |
AL | −0.182 | −0.184 | 0.024 | −0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bernardo, M.; Abbinante, G.; Borrelli, M.; Di Stasi, M.; Cione, F.; Rosa, N. Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers. J. Clin. Med. 2022, 11, 6234. https://doi.org/10.3390/jcm11216234
De Bernardo M, Abbinante G, Borrelli M, Di Stasi M, Cione F, Rosa N. Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers. Journal of Clinical Medicine. 2022; 11(21):6234. https://doi.org/10.3390/jcm11216234
Chicago/Turabian StyleDe Bernardo, Maddalena, Giulia Abbinante, Maria Borrelli, Margherita Di Stasi, Ferdinando Cione, and Nicola Rosa. 2022. "Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers" Journal of Clinical Medicine 11, no. 21: 6234. https://doi.org/10.3390/jcm11216234
APA StyleDe Bernardo, M., Abbinante, G., Borrelli, M., Di Stasi, M., Cione, F., & Rosa, N. (2022). Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers. Journal of Clinical Medicine, 11(21), 6234. https://doi.org/10.3390/jcm11216234