The Need for a Specialized Neurocognitive Screen and Consistent Cognitive Impairment Criteria in Spinal Cord Injury: Analysis of the Suitability of the Neuropsychiatry Unit Cognitive Assessment Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedure
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | spinal cord injury |
MCI | mild cognitive impairment |
NUCOG | Neuropsychiatry Unit Cognitive Assessment tool |
DSM | Diagnostic and Statistical Manual of Mental Disorders |
MOCA | Montreal Cognitive Assessment |
SD | standard deviation |
CFA | confirmatory factor analysis |
TLI | Tucker–Lewis index |
CFI | comparative fit index |
RMSEA | root mean square error of approximation |
SRMR | Standardized Root Mean Squared Residual |
WAIS | Weschler Adult Intelligence Scale |
References
- Sachdeva, R.; Gao, F.; Chan, C.C.H.; Krassioukov, A.V. Cognitive function after spinal cord injury: A systematic review. Neurology 2018, 91, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Guest, R.; Tran, Y.; Middleton, J. Cognitive impairment and mood states after spinal cord injury. J. Neurotrauma 2017, 34, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; Weber, E.; Wylie, G.; Dyson-Hudson, T.; Wecht, J.M. Patterns of cognitive deficits in persons with spinal cord injury as compared with both age-matched and older individuals without spinal cord injury. J. Spinal Cord Med. 2020, 43, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Molina, B.; Segura, A.; Serrano, J.P.; Alonso, F.J.; Molina, L.; Pérez-Borrego, Y.A.; Ugarte, M.I.; Oliviero, O. Cognitive performance of people with traumatic spinal cord injury: A cross-sectional study comparing people with subacute and chronic injuries. Spinal Cord 2018, 56, 796–805. [Google Scholar] [CrossRef]
- Sandalic, D.; Craig, A.; Arora, M.; Pozzato, I.; Simpson, G.; Gopinath, B.; Kaur, J.; Shetty, S.; Weber, G.; Cameron, I.; et al. A prospective cohort study investigating contributors to mild cognitive impairment in adults with spinal cord injury: Study protocol. BMC Neurol. 2020, 20, 341. [Google Scholar] [CrossRef]
- Dowler, R.N.; Harrington, D.L.; Haaland, K.Y.; Swanda, R.M.; Fee, F.; Fiedler, K. Profile of cognitive functioning in chronic spinal cord injury and the role of moderating variables. J. Int. Neuropsychol. Soc. 1997, 3, 464–472. [Google Scholar] [CrossRef]
- Bradbury, C.L.; Wodchis, W.P.; Mikulis, D.J.; Pano, E.G.; Hitzig, S.L.; McGillivray, C.F.; Ahmad, F.N.; Craven, B.C.; Green, R.E. Traumatic brain injury in patients with traumatic spinal cord injury: Clinical and economic consequences. Arch. Phys. Med. Rehabil. 2008, 89, S77–S84. [Google Scholar] [CrossRef]
- Macciocchi, S.; Seel, R.; Thompson, N.; Byams, R.; Bowman, B. Spinal cord injury and co-occurring traumatic brain injury: Assessment and incidence. Arch. Phys. Med. Rehabil. 2008, 89, 1350–1357. [Google Scholar] [CrossRef]
- Tolonen, A.; Turkka, J.; Salonen, O.; Ahoniemi, E.; Alaranta, H. Traumatic brain injury is under-diagnosed in patients with spinal cord injury. J. Rehabil. Med. 2007, 39, 622–626. [Google Scholar] [CrossRef]
- Craig, A.; Nicholson Perry, K.; Guest, R.; Tran, Y.; Dezarnaulds, A.; Hales, A.; Ephraums, C.; Middleton, J. A prospective study of the occurrence of psychological disorders and co-morbidities following spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 1426–1434. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Z.; Sabirzhanov, B.; Stoica, B.A.; Kumar, A.; Luo, T.; Skovira, J.; Faden, A.I. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: Role of cell cycle pathways. J. Neurosci. 2014, 34, 10989–11006. [Google Scholar] [CrossRef]
- Nightingale, T.E.; Zheng, M.M.Z.; Sachdeva, R.; Phillips, A.A.; Krassioukov, A.V. Diverse cognitive impairment after spinal cord injury is associated with orthostatic hypotension symptom burden. Physiol. Behav. 2020, 213, 112742. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Tran, Y.; Wijesuriya, N.; Middleton, J. Fatigue and tiredness in people with spinal cord injury. J. Psychosom. Res. 2012, 73, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Tun, C.G.; Tun, P.A.; Wingfield, A. Cognitive function following long-term spinal cord injury. Rehabil. Psychol. 1997, 42, 163–182. [Google Scholar] [CrossRef]
- Walterfang, M.; Siu, R.; Velakoulis, D. The NUCOG: Validity and reliability of a brief cognitive screening tool in neuropsychiatric patients. Aust. N. Z. J. Psychiatry 2006, 40, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Guest, R.; Middleton, J. Screening for Cognitive Impairment in Adults with Spinal Cord Injury with the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG); JWCRR: Sydney, Australia, 2016; ISBN 978-0-9871729-4-5. [Google Scholar]
- Miller, D.I.; Davidson, P.S.; Schindler, D.; Messier, C. Confirmatory factor analysis of the WAIS-IV and WMS-IV in older adults. J. Psychoeduc. Assess. 2013, 31, 375–390. [Google Scholar] [CrossRef]
- Rodrigues, D.; Tran, Y.; Guest, R.; Middleton, J.; Craig, A. Influence of neurological lesion level on heart rate variability and fatigue in adults with spinal cord injury. Spinal Cord 2016, 54, 292–297. [Google Scholar] [CrossRef]
- Hill-Briggs, F.; Dial, J.G.; Morere, D.A.; Joyce, A. Neuropsychological assessment of persons with physical disability, visual impairment or blindness, and hearing impairment or deafness. Arch. Clin. Neuropsychol. 2007, 22, 389–404. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 2nd ed.; Harper & Row: New York, NY, USA, 1989. [Google Scholar]
- Kyriazos, T.A. Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology 2018, 9, 2207–2230. [Google Scholar] [CrossRef]
- Perry, J.L.; Nicholls, A.R.; Clough, P.J.; Crust, L. Assessing model fit: Caveats and recommendations for confirmatory factor analysis and exploratory structural equation modeling. Meas. Phys. Educ. Exer. Sci. 2015, 19, 12–21. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modelling, 4th ed.; The Guilford Press: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Crawford, J.R.; Garthwaite, P.H. Percentiles please: The case for expressing neuropsychological test scores and accompanying confidence limits as percentile ranks. Clin. Neuropsychol. 2009, 23, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Roebuck-Spencer, T.M.; Glen, T.; Puente, A.E.; Denney, R.L.; Ruff, R.M.; Hostetter, G.; Bianchini, K.J. Cognitive screening tests versus comprehensive neuropsychological test batteries: A national academy of neuropsychology education paper. Arch. Clin. Neuropsychol. 2017, 32, 491–498. [Google Scholar] [CrossRef]
- Kochan, N.A.; Slavin, M.J.; Brodaty, H.; Crawford, J.D.; Trollor, J.N.; Draper, B.; Sachdev, P.S. Effect of different impairment criteria on prevalence of “objective” mild cognitive impairment in a community sample. Am. J. Ger. Psychiatr. 2010, 18, 711–722. [Google Scholar] [CrossRef]
- Smith, C.R.; Cavanagh, J.; Sheridan, M.; Grosset, K.A.; Cullen, B.; Grosset, D.G. Factor structure of the Montreal Cognitive Assessment in Parkinson disease. Int. J. Ger. Psychiatr. 2020, 35, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Panizzon, M.S.; Vuoksimaa, E.; Spoon, K.M.; Jacobson, K.C.; Lyons, M.J.; Franz, C.E.; Xian, H.; Vasilopoulos, T.; Kremen, W.S. Genetic and environmental influences on general cognitive ability: Is g a valid latent construct? Intelligence 2014, 43, 65–76. [Google Scholar] [CrossRef]
- Ahmed, S.; Brennan, L.; Eppig, J.; Price, C.C.; Lamar, M.; Delano-Wood, L.; Bangen, K.J.; Edmonds, E.C.; Clark, L.; Nation, D.A.; et al. Visuoconstructional impairment in subtypes of mild cognitive impairment. Appl. Neuropsychol. Adult 2016, 23, 43–52. [Google Scholar] [CrossRef]
- Sachdev, P.S.; Blacker, D.; Blazer, D.G.; Ganguli, M.; Jeste, D.V.; Paulsen, J.S.; Petersen, R.C. Classifying neurocognitive disorders: The DSM-5 approach. Nat. Rev. Neurol. 2014, 10, 634–642. [Google Scholar] [CrossRef]
- Li, F.; Huo, S.; Song, W. Multidimensional review of cognitive impairment after spinal cord injury. Acta Neurol. Belg. 2021, 121, 37–46. [Google Scholar] [CrossRef]
- Middleton, J.W.; Truman, G.; Geraghty, T.J. Neurological level effect on the discharge functional status of spinal cord injured persons after rehabilitation. Arch. Phys. Med. Rehabil. 1998, 79, 1428–1432. [Google Scholar] [CrossRef]
- Wylie, G.R.; Chiaravalloti, N.D.; Weber, E.; Genova, H.M.; Dyson-Hudson, T.A.; Wecht, J.M. The neural mechanisms underlying processing speed deficits in individuals who have sustained a spinal cord injury: A pilot study. Brain Top. 2020, 33, 776–784. [Google Scholar] [CrossRef]
- Boord, P.; Siddall, P.; Tran, Y.; Herbert, D.; Middleton, J.; Craig, A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 2008, 46, 118–123. [Google Scholar] [CrossRef]
- Tran, Y.; Boord, P.; Middleton, J.; Craig, A. Levels of brain activity (8–13 Hz) in persons with spinal cord injury. Spinal Cord 2004, 42, 73–79. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Hillsdon, M.; Brunner, E.; Marmot, M. Effects of physical activity on cognitive functioning in middle age: Evidence from the Whitehall II prospective cohort study. Am. J. Public. Health 2005, 95, 2252–2258. [Google Scholar] [CrossRef]
- Craig, A.; Hancock, K.; Dickson, H. Improving the long-term adjustment of spinal cord injured persons. Spinal Cord 1999, 37, 345–350. [Google Scholar] [CrossRef]
- Craig, A.; Hancock, K.; Dickson, H.; Chang, E. Immunizing against depression and anxiety following spinal cord injury. Arch. Phys. Med. Rehabil. 1998, 79, 375–377. [Google Scholar] [CrossRef]
Rehabilitation n = 97 | Community n = 30 | Combined n = 127 | |
---|---|---|---|
Sex males, n (%) | 72 (74) | 28 (93) | 100 (79) |
Age mean years (SD) | 44.82 (18) | 53.60 (14) * | 46.90 (18) |
Years education, mean (SD) | 12.84 (2.5) | 13.14 (2.2) | 12.92 (2.4) |
Tetraplegia, n (%) | 39 (40) | 11 (37) | 50 (39) |
Years since injury, mean (SD) | 0.15 (0.1) | 6.00 (6.3) * | 1.54 (3.9) |
Complete lesion, n (%) | 44 (45) | 21 (70) | 65 (51) |
NUCOG total mean (SD) | 90.27 (6.7) | 94.41 (4.1) * | 91.25 (6.4) |
Attention, mean (SD) | 17.00 (2.7) | 18.60 (1.9) * | 17.40 (2.7) |
Visuoconstruction, mean (SD) | 18.71 (1.4) | 19.73 (0.5) * | 18.95 (1.3) |
Memory, mean (SD) | 17.72 (2.0) | 18.43 (1.9) * | 17.89 (2.0) |
Language, mean (SD) | 19.28 (0.9) | 19.83 (0.4) * | 19.41 (0.8) |
Executive function, mean (SD) | 17.76 (2.2) | 17.82 (2.2) * | 17.7 (2.2) |
NUCOG Score/100 | Count | Cumulative Count | Percent | Cumulative Percent |
---|---|---|---|---|
≤75 | 4 | 4 | 3.14961 | 3.1496 |
>75 and ≤80 | 3 | 7 | 2.36220 | 5.5118 |
>80 and ≤85 | 15 | 22 | 11.81102 | 17.3228 |
>85 and ≤90 | 24 | 46 | 18.89764 | 36.2205 |
>90 and ≤95 | 40 | 86 | 31.49606 | 67.7165 |
>95 | 41 | 127 | 32.28346 | 100.0000 |
NUCOG Item | Descriptive Statistics for All NUCOG Items | ||||||
---|---|---|---|---|---|---|---|
Possible Score | N | Mean | Median | Minimum | Maximum | SD | |
a 1 | 5 | 127 | 4.94 | 5 | 4 | 5 | 0.24 |
a 2 | 4 | 127 | 3.13 | 4 | 0 | 4 | 1.14 |
a 2-2 | 4 | 127 | 2.48 | 3 | 0 | 4 | 1.46 |
a3 | 7 | 127 | 6.83 | 7 | 0 | 7 | 0.89 |
v 1 | 4 | 127 | 3.90 | 4 | 2.5 | 4 | 0.29 |
v 2 | 4 | 127 | 3.85 | 4 | 3 | 4 | 0.31 |
v 3 | 4 | 127 | 3.90 | 4 | 2 | 4 | 0.37 |
v 4 | 4 | 127 | 3.92 | 4 | 3 | 4 | 0.26 |
v 5 | 4 | 127 | 3.33 | 4 | 1 | 4 | 0.93 |
m 1 | 3 | 127 | 3.00 | 3 | 3 | 3 | 0 |
m 1-2 | 3 | 127 | 2.05 | 2.5 | 0 | 3 | 0.99 |
m 2 | 8 | 127 | 7.14 | 8 | 0.5 | 8 | 1.42 |
m 3 | 6 | 127 | 5.61 | 6 | 3 | 6 | 0.65 |
e 1 | 4 | 127 | 3.56 | 4 | 0 | 4 | 0.96 |
e 2 | 10 | 127 | 8.93 | 10 | 4 | 10 | 1.62 |
e 3 | 4 | 127 | 3.26 | 3.5 | 0 | 4 | 0.92 |
e 4 | 2 | 127 | 1.94 | 2 | 0 | 2 | 0.26 |
l 1 | 4 | 126 | 3.90 | 4 | 3 | 4 | 0.29 |
l 2 | 5 | 127 | 4.91 | 5 | 3 | 5 | 0.33 |
l 3 | 5 | 127 | 4.95 | 5 | 3 | 5 | 0.25 |
l 4 | 2 | 127 | 1.64 | 2 | 0 | 2 | 0.50 |
l 5 | 2 | 127 | 1.97 | 2 | 0 | 2 | 0.25 |
l 6 | 2 | 127 | 1.99 | 2 | 1.5 | 2 | 0.04 |
Att | Mem | Vis | Exec | Lang | Age | Sex | TSI | Level | Yr Ed | |
---|---|---|---|---|---|---|---|---|---|---|
Att | --- | 0.36 *** | 0.53 *** | 0.26 ** | 0.38 *** | −0.14 | 0.05 | 0.12 | 0.13 | 0.19 * |
Mem | --- | 0.42 *** | 0.46 *** | 0.09 | −0.25 ** | 0.08 | −0.05 | −0.03 | 0.14 | |
Vis | --- | 0.28 ** | 0.36 *** | 0.07 | −0.05 | −0.15 | 0.11 | 0.26 ** | ||
Exec | --- | 0.32 *** | −0.28 ** | 0.26 ** | −0.03 | 0.03 | 0.16 | |||
Lang | --- | 0.02 | 0.11 | 0.18 | 0.03 | 0.09 | ||||
Age | --- | −0.10 | 0.19 * | −0.11 | 0.07 | |||||
Sex | --- | −0.17 | 0.06 | 0.07 | ||||||
TSI | --- | −0.06 | −0.05 | |||||||
Level | --- | −0.03 | ||||||||
Yr Ed | --- |
Domain | χ2 | df | p | TLI | CFI | RMSEA (90% CI) | SRMR |
---|---|---|---|---|---|---|---|
Attention | 2.67 | 2 | 0.23 | 0.92 | 0.97 | 0.07 (0.00, 0.28) | 0.06 |
Visuoconst | 6.15 | 5 | 0.29 | 0.85 | 0.92 | 0.05 (0.00, 0.15) | 0.05 |
Executive | 16.9 | 2 | <0.01 | 0.31 | 0.77 | 0.12 (0.07, 0.18) | 0.05 |
Memory | Not fitted | ||||||
Language | Not fitted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandalic, D.; Tran, Y.; Craig, A.; Arora, M.; Pozzato, I.; Simpson, G.; Gopinath, B.; Kaur, J.; Shetty, S.; Weber, G.; et al. The Need for a Specialized Neurocognitive Screen and Consistent Cognitive Impairment Criteria in Spinal Cord Injury: Analysis of the Suitability of the Neuropsychiatry Unit Cognitive Assessment Tool. J. Clin. Med. 2022, 11, 3344. https://doi.org/10.3390/jcm11123344
Sandalic D, Tran Y, Craig A, Arora M, Pozzato I, Simpson G, Gopinath B, Kaur J, Shetty S, Weber G, et al. The Need for a Specialized Neurocognitive Screen and Consistent Cognitive Impairment Criteria in Spinal Cord Injury: Analysis of the Suitability of the Neuropsychiatry Unit Cognitive Assessment Tool. Journal of Clinical Medicine. 2022; 11(12):3344. https://doi.org/10.3390/jcm11123344
Chicago/Turabian StyleSandalic, Danielle, Yvonne Tran, Ashley Craig, Mohit Arora, Ilaria Pozzato, Grahame Simpson, Bamini Gopinath, Jasbeer Kaur, Sachin Shetty, Gerard Weber, and et al. 2022. "The Need for a Specialized Neurocognitive Screen and Consistent Cognitive Impairment Criteria in Spinal Cord Injury: Analysis of the Suitability of the Neuropsychiatry Unit Cognitive Assessment Tool" Journal of Clinical Medicine 11, no. 12: 3344. https://doi.org/10.3390/jcm11123344
APA StyleSandalic, D., Tran, Y., Craig, A., Arora, M., Pozzato, I., Simpson, G., Gopinath, B., Kaur, J., Shetty, S., Weber, G., Benad, L., & Middleton, J. W. (2022). The Need for a Specialized Neurocognitive Screen and Consistent Cognitive Impairment Criteria in Spinal Cord Injury: Analysis of the Suitability of the Neuropsychiatry Unit Cognitive Assessment Tool. Journal of Clinical Medicine, 11(12), 3344. https://doi.org/10.3390/jcm11123344