Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection and Definition
2.3. Measurement of L-FABP Levels
2.4. Outcome Definition
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics Analysis: Non-AKI vs. AKI Groups
3.2. Characteristics of Patients Who Had CPB Durations Longer Than 120 min
3.3. Performance of L-FABP in Discriminating AKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuo, G.; Yang, S.Y.; Chuang, S.S.; Fan, P.C.; Chang, C.H.; Hsiao, Y.C.; Chen, Y.C. Using acute kidney injury severity and scoring systems to predict outcome in patients with burn injury. J. Formos. Med. Assoc. 2016, 115, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Singhania, G.; Bihorac, A. Acute Kidney Injury in the Surgical Patient. Crit. Care Clin. 2015, 31, 705–723. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Lee, C.C.; Chen, S.W.; Fan, P.C.; Chen, Y.C.; Chang, S.W.; Chen, T.H.; Wu, V.C.; Lin, P.J.; Tsai, F.C. Predicting Acute Kidney Injury Following Mitral Valve Repair. Int. J. Med. Sci. 2016, 13, 19–24. [Google Scholar] [CrossRef]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.H.; Brooks, C.S.; Burch, R.N. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am. J. Kidney Dis. 1982, 2, 337–346. [Google Scholar] [CrossRef]
- McIlroy, D.R.; Wagener, G.; Lee, H.T. Biomarkers of acute kidney injury: An evolving domain. Anesthesiology 2010, 112, 998–1004. [Google Scholar] [CrossRef]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not So Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef]
- Chmurzynska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum. Genom. 2011, 5, 170–191. [Google Scholar] [CrossRef]
- Sweetser, D.A.; Heuckeroth, R.O.; Gordon, J.I. The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Annu. Rev. Nutr. 1987, 7, 337–359. [Google Scholar] [CrossRef]
- Schroeder, F.; Petrescu, A.D.; Huang, H.; Atshaves, B.P.; McIntosh, A.L.; Martin, G.G.; Hostetler, H.A.; Vespa, A.; Landrock, D.; Landrock, K.K.; et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2008, 43, 1–17. [Google Scholar] [CrossRef]
- Ek-Von Mentzer, B.A.; Zhang, F.; Hamilton, J.A. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J. Biol. Chem. 2001, 276, 15575–15580. [Google Scholar] [CrossRef]
- Wang, G.; Gong, Y.; Anderson, J.; Sun, D.; Minuk, G.; Roberts, M.S.; Burczynski, F.J. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 2005, 42, 871–879. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Y.; Shao, X.; Ni, Z.; Mou, S. L-FABP: A novel biomarker of kidney disease. Clin. Chim. Acta 2015, 445, 85–90. [Google Scholar] [CrossRef]
- Yamamoto, T.; Noiri, E.; Ono, Y.; Doi, K.; Negishi, K.; Kamijo, A.; Kimura, K.; Fujita, T.; Kinukawa, T.; Taniguchi, H.; et al. Renal L-type fatty acid—Binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 2007, 18, 2894–2902. [Google Scholar] [CrossRef]
- Bellomo, R.; Auriemma, S.; Fabbri, A.; D’Onofrio, A.; Katz, N.; McCullough, P.A.; Ricci, Z.; Shaw, A.; Ronco, C. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int. J. Artif. Organs 2008, 31, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.M.; Weissenberger, W.K.; Warters, R.D.; Geissler, H.J.; Allen, S.J.; Mehlhorn, U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion 2002, 17, 401–406. [Google Scholar] [CrossRef]
- Axtell, A.L.; Fiedler, A.G.; Melnitchouk, S.; D’Alessandro, D.A.; Villavicencio, M.A.; Jassar, A.S.; Sundt, T.M., 3rd. Correlation of cardiopulmonary bypass duration with acute renal failure after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Wykrzykowska, J.J.; Garg, S.; Onuma, Y.; de Vries, T.; Goedhart, D.; Morel, M.A.; van Es, G.A.; Buszman, P.; Linke, A.; Ischinger, T.; et al. Value of age, creatinine, and ejection fraction (ACEF score) in assessing risk in patients undergoing percutaneous coronary interventions in the ‘All-Comers’ LEADERS trial. Circ. Cardiovasc. Interv. 2011, 4, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Stahli, B.E.; Wischnewsky, M.B.; Jakob, P.; Klingenberg, R.; Obeid, S.; Heg, D.; Raber, L.; Windecker, S.; Roffi, M.; Mach, F.; et al. Predictive value of the age, creatinine, and ejection fraction (ACEF) score in patients with acute coronary syndromes. Int. J. Cardiol. 2018, 270, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Section 2: AKI Definition. Kidney Int. 2012, 2, 19–36. [CrossRef]
- Alge, J.L.; Arthur, J.M. Biomarkers of AKI: A review of mechanistic relevance and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 2015, 10, 147–155. [Google Scholar] [CrossRef]
- Parikh, C.R.; Thiessen-Philbrook, H.; Garg, A.X.; Kadiyala, D.; Shlipak, M.G.; Koyner, J.L.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M.; et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 2013, 8, 1079–1088. [Google Scholar] [CrossRef]
- Ho, J.; Tangri, N.; Komenda, P.; Kaushal, A.; Sood, M.; Brar, R.; Gill, K.; Walker, S.; MacDonald, K.; Hiebert, B.M.; et al. Urinary, Plasma, and Serum Biomarkers’ Utility for Predicting Acute Kidney Injury Associated With Cardiac Surgery in Adults: A Meta-analysis. Am. J. Kidney Dis. 2015, 66, 993–1005. [Google Scholar] [CrossRef]
- Matsui, K.; Kamijo-Ikemori, A.; Sugaya, T.; Yasuda, T.; Kimura, K. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults. Circ. J. 2012, 76, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, D.; Doi, K.; Honda, K.; Negishi, K.; Fujita, T.; Hisagi, M.; Ono, M.; Matsubara, T.; Yahagi, N.; Iwagami, M.; et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann. Thorac. Surg. 2012, 93, 577–583. [Google Scholar] [CrossRef]
- Lehner, G.F.; Forni, L.G.; Joannidis, M. Oliguria and Biomarkers of Acute Kidney Injury: Star Struck Lovers or Strangers in the Night? Nephron 2016, 134, 183–190. [Google Scholar] [CrossRef]
- Tonomura, Y.; Matsubara, M.; Kazama, I. Biomarkers in Urine and Use of Creatinine. In General Methods in Biomarker Research and Their Applications; Preedy, V.R., Patel, V.B., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 165–186. [Google Scholar]
- Boldt, J.; Brenner, T.; Lehmann, A.; Suttner, S.W.; Kumle, B.; Isgro, F. Is kidney function altered by the duration of cardiopulmonary bypass? Ann. Thorac. Surg. 2003, 75, 7. [Google Scholar] [CrossRef]
- Sirvinskas, E.; Andrejaitiene, J.; Raliene, L.; Nasvytis, L.; Karbonskiene, A.; Pilvinis, V.; Sakalauskas, J. Cardiopulmonary bypass management and acute renal failure: Risk factors and prognosis. Perfusion 2008, 23, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Paarmann, H.; Charitos, E.; Beilharz, A.; Schön, J.; Berggreen, A.E.; Heringlake, M. Duration of cardiopulmonary bypass is an important confounder when using biomarkers for early diagnosis of acute kidney injury in cardiac surgical patients. Appl. Cardiopulm. Pathophysiol. 2013, 17, 284–297. [Google Scholar]
- Loef, B.G.; Epema, A.H.; Navis, G.; Ebels, T.; van Oeveren, W.; Henning, R.H. Off-pump coronary revascularization attenuates transient renal damage compared with on-pump coronary revascularization. Chest 2002, 121, 1190–1194. [Google Scholar] [CrossRef][Green Version]
- Haase, M.; Bellomo, R.; Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 2010, 55, 2024–2033. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Chang, C.H.; Chen, S.W.; Fan, P.C.; Chang, S.W.; Chen, Y.T.; Nan, Y.Y.; Lin, P.J.; Tsai, F.C. Preoperative risk assessment improves biomarker detection for predicting acute kidney injury after cardiac surgery. PLoS ONE 2018, 13, e0203447. [Google Scholar] [CrossRef]
- Chen, J.J.; Lee, T.H.; Lee, C.C.; Chang, C.H. Using lipocalin as a prognostic biomarker in acute kidney injury. Expert Rev. Mol. Diagn. 2021, 1–10. [Google Scholar] [CrossRef]
- Robson, A.F.; Hupp, T.R.; Lickiss, F.; Ball, K.L.; Faulds, K.; Graham, D. Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proc. Natl. Acad. Sci. USA 2012, 109, 8073–8078. [Google Scholar] [CrossRef] [PubMed]
- Schley, G.; Koberle, C.; Manuilova, E.; Rutz, S.; Forster, C.; Weyand, M.; Formentini, I.; Kientsch-Engel, R.; Eckardt, K.U.; Willam, C. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury. PLoS ONE 2015, 10, e0145042. [Google Scholar] [CrossRef] [PubMed]
- Gocze, I.; Jauch, D.; Gotz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury after Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Ilaria, G.; Kianoush, K.; Ruxandra, B.; Francesca, M.; Mariarosa, C.; Davide, G.; Claudio, R. Clinical adoption of Nephrocheck(R) in the early detection of acute kidney injury. Ann. Clin. Biochem. 2021, 58, 6–15. [Google Scholar] [CrossRef]
- Rizo-Topete, L.M.; Rosner, M.H.; Ronco, C. Acute Kidney Injury Risk Assessment and the Nephrology Rapid Response Team. Blood Purif. 2017, 43, 82–88. [Google Scholar] [CrossRef]
All Patients (n = 144) | AKI (n = 59) | Non-AKI (n = 85) | p | |
---|---|---|---|---|
Baseline characters | ||||
Age, year | 62.0 ± 12.8 | 63.6 ± 12.8 | 60.9 ± 12.8 | 0.216 ‡ |
Gender, male | 95 (66.0%) | 38 (64.4%) | 57 (67.0%) | 0.741 |
Underlying disease | ||||
Diabetes mellitus | 53 (36.8%) | 20 (33.9%) | 33 (38.8%) | 0.547 |
Preoperation examination data | ||||
Hemoglobin, g/dL | 12.5 ± 2.4 | 11.6 ± 2.4 | 13.1 ± 2.2 | <0.001 ‡ |
Platelet, 1000/uL | 226.2 ± 81.8 | 223.1 ± 91.0 | 228.3 ± 75.2 | 0.715 ‡ |
White blood cell count, /uL | 7443.4 ± 2599.3 | 7650.0 ± 2968.5 | 7302.3 ± 2322.2 | 0.434 ‡ |
Creatinine, mg/dL | 0.8 [0.7; 1.0] | 0.8 [0.7; 1.2] | 0.8 [0.7; 1.0] | 0.509 † |
eGFR, mL/min * | 86.2 ± 22.7 | 83.0 ± 24.0 | 88.4 ± 21.5 | 0.159 ‡ |
ALT, mg/dL | 25.0 [18.0; 36.5] | 29.0 [18.0; 40.0] | 24.5 [18.0; 35.2] | 0.544 † |
LVEF, % | 64 [52; 70] | 62 [47; 68] | 65 [55; 72] | 0.211 † |
ACEF score | 1.0 [0.8; 1.3] | 1.1 [0.9; 1.3] | 1.0 [0.8; 1.2] | 0.091 † |
Surgical type | ||||
Aortic surgery | 1 (0.7%) | 1 (1.7%) | 0 (0%) | |
CABG | 53 (36.8%) | 15 (25.4%) | 38 (44.7%) | |
CABG and valve surgery | 9 (6.3%) | 6 (10.2%) | 3 (3.5%) | |
Valve surgery | 80 (55.6%) | 36 (61.0%) | 44 (51.8%) | |
Others | 1 (0.7%) | 1 (1.7%) | 0 (0%) | |
Surgical-related factors | ||||
CPB time, mins | 138.2 ± 58.2 | 165.8 ± 62.5 | 118.9 ± 46.3 | <0.001 ‡ |
Clamp time, mins | 80 [0; 114] | 98 [41; 143] | 71 [0; 108] | 0.003 † |
HTK perfusion | 98 (68.1%) | 46 (78.0%) | 52 (61.2%) | 0.034 |
Postoperative L-FABP data | ||||
1st time L-FABP, ng/dL | 59.8 [21.9; 179.0] | 77.5 [26.7; 236.9] | 43.0 [16.6; 124.1] | 0.032 † |
2nd time L-FABP, ng/dL | 60.4 [20.7; 165.2] | 119.4 [50.2; 425.7] | 42.6 [14.9; 97.9] | <0.001 † |
1st time L-FABP to Creatinine ratio, ng/mg | 3.2 [0.9; 9.8] | 5.2 [1.4; 13.5] | 2.2 [0.7; 7.9] | 0.006 † |
2nd time L-FABP to Creatinine ratio, ng/mg | 0.8 [0.3; 2.8] | 1.7 [0.7; 6.6] | 0.5 [0.2; 1.4] | <0.001 † |
ICU stay, days | 2 [1; 3] | 3 [2; 5] | 1 [1; 2] | <0.001 † |
Mortality | 5 (3.5%) | 1 (1.2%) | 4 (6.8%) | 0.072 |
All Patients (n = 85) | AKI (n = 46) | Non-AKI (n = 39) | p | |
---|---|---|---|---|
Baseline characters | ||||
Age, year | 62.1 ± 12.1 | 63.5 ± 12.5 | 60.5 ± 11.5 | 0.269 ‡ |
Gender, male | 55 (64.7%) | 31 (67.4%) | 24 (61.5%) | 0.574 |
Underlying disease | ||||
Diabetes mellitus | 24 (28.2%) | 14 (30.4%) | 10 (25.6%) | 0.625 |
Preoperation examination data | ||||
Hemoglobin, g/dL | 12.3 ± 2.3 | 11.7 ± 2.4 | 13.0 ± 2.0 | 0.013 ‡ |
Platelet, 1000/uL | 220.8 ± 85.3 | 209.8 ± 83.9 | 233.8 ± 86.3 | 0.205 ‡ |
White blood cell count, /uL | 7527.4 ± 2572.0 | 7880.0 ± 3201.8 | 7120.5 ± 2086.8 | 0.209 ‡ |
Creatinine, mg/dL | 0.8 [0.7; 1.0] | 0.8 [0.7; 1.2] | 0.8 [0.7; 0.9] | 0.412 † |
eGFR, mL/min * | 85.5 ± 22.7 | 82.6 ± 23.1 | 88.9 ± 22.0 | 0.201 ‡ |
ALT, mg/dL | 25.0 [16.0; 38.0] | 31.0 [16.0; 40.0] | 24.5 [16.8; 36.5] | 0.508 † |
LVEF, % | 60.9 ± 13.2 | 60.6 ± 13.9 | 61.2 ± 12.5 | 0.855 ‡ |
ACEF score | 1.0 [0.8; 1.3] | 1.0 [0.9; 1.3] | 1.0 [0.8; 1.2] | 0.173 † |
Surgical type | ||||
Aortic surgery | 1 (1.2%) | 1 (2.2%) | 0 (0%) | |
CABG | 15 (17.6%) | 7 (15.2%) | 8 (20.5%) | |
CABG and valve surgery | 9 (10.6%) | 6 (13.0%) | 3 (7.7%) | |
Valve surgery | 59 (69.4%) | 31 (67.4%) | 28 (71.8%) | |
Others | 1 (1.2%) | 1 (2.2%) | 0 (0%) | |
Surgical related factors | ||||
CPB time, mins | 172.5 ± 49.2 | 184.3 ± 57.8 | 158.5 ± 32.0 | 0.012 ‡ |
Clamp time, mins | 103.6 ± 54.0 | 109.5 ± 50.8 | 96.7 ± 47.7 | 0.278 ‡ |
HTK perfusion | 74 (87.1%) | 41 (89.1%) | 33 (84.6%) | 0.537 |
Postoperative L-FABP data | ||||
1st time L-FABP, ng/dL | 91.0 [26.1; 244.1] | 114.1 [39.9; 283.2] | 73.8 [22.8; 203.1] | 0.169 † |
2nd time L-FABP, ng/dL | 104.1 [36.9; 270.0] | 155.2 [62.6; 467.7] | 54.5 [22.6; 118.3] | <0.001 † |
1st time L-FABP to Creatinine ratio, ng/mg | 5.8 [1.5; 12.3] | 5.7 [1.6; 15.2] | 5.8 [0.9; 10.2] | 0.096 † |
2nd time L-FABP to Creatinine ratio, ng/mg | 1.2 [0.5; 4.5] | 2.7 [0.9; 8.6] | 0.9 [0.3; 1.4] | <0.001 † |
ICU stay, days | 2 [1; 4] | 3 [2; 5] | 1 [1; 2] | <0.001 † |
Mortality | 3 (3.5%) | 3 (6.5%) | 0 (0%) | 0.104 |
Population | AUROC (95% CI) | p Value | Sensitivity (%) | Specificity (%) | Optimal Cut-Off † | |
---|---|---|---|---|---|---|
1st timepoint | Urinary L-FABP | |||||
Total | 0.598 (0.503–0.694) | 0.046 | 40.7 | 77.1 | >132.34 | |
CPB duration > 120 min | 0.579 (0.456–0.702) | 0.063 | 21.7 | 97.4 | >337.08 | |
Urinary L-FABP-to-creatinine ratio | ||||||
Total | 0.627 (0.533–0.722) | 0.010 | 33.9 | 89.2 | >11.842 | |
CPB duration > 120 min | 0.596 (0.475–0.718) | 0.131 | 39.1 | 84.2 | >11.842 | |
2nd timepoint | Urinary L-FABP | |||||
Total | 0.720 (0.633–0.807) | <0.001 | 61.0 | 77.1 | >101.77 | |
CPB duration > 120 min | 0.742 (0.636–0.848) | <0.001 | 71.7 | 73.7 | >101.77 | |
Urinary L-FABP-to-creatinine ratio | ||||||
Total | 0.727 (0.643–0.811) | <0.001 | 79.7 | 56.6 | >0.612 | |
CPB duration > 120 min | 0.751 (0.648–0.855) | <0.001 | 73.9 | 68.1 | >1.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.H.; Lee, C.-C.; Chen, J.-J.; Fan, P.-C.; Tu, Y.-R.; Yen, C.-L.; Kuo, G.; Chen, S.-W.; Tsai, F.-C.; Chang, C.-H. Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. J. Clin. Med. 2021, 10, 2741. https://doi.org/10.3390/jcm10132741
Lee TH, Lee C-C, Chen J-J, Fan P-C, Tu Y-R, Yen C-L, Kuo G, Chen S-W, Tsai F-C, Chang C-H. Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. Journal of Clinical Medicine. 2021; 10(13):2741. https://doi.org/10.3390/jcm10132741
Chicago/Turabian StyleLee, Tao Han, Cheng-Chia Lee, Jia-Jin Chen, Pei-Chun Fan, Yi-Ran Tu, Chieh-Li Yen, George Kuo, Shao-Wei Chen, Feng-Chun Tsai, and Chih-Hsiang Chang. 2021. "Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery" Journal of Clinical Medicine 10, no. 13: 2741. https://doi.org/10.3390/jcm10132741
APA StyleLee, T. H., Lee, C.-C., Chen, J.-J., Fan, P.-C., Tu, Y.-R., Yen, C.-L., Kuo, G., Chen, S.-W., Tsai, F.-C., & Chang, C.-H. (2021). Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. Journal of Clinical Medicine, 10(13), 2741. https://doi.org/10.3390/jcm10132741