Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Experimental Setup and Methods
3. Results and Discussion
3.1. Uranium Speciation Analysis
3.2. Concentration Polarization
3.3. Rejection of Uranium in ADUF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Murchie, M.P.; Reid, S.J. Advances in Nuclear Fuel Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–370. [Google Scholar]
- International Atomic Energy Agency. Application of Membrane Technologies for Liquid Radioactive Waste Processing; Application of Membrane Technologies for Liquid Radioactive Waste Processing; International Atomic Energy Agency: Vienna, Austria, 2004. [Google Scholar]
- Prabhakar, S.; Panicker, S.T.; Misra, B.M.; Ramani, M.P.S. Studies on the Reverse Osmosis Treatment of Uranyl Nitrate Solution. Sep. Sci. Technol. 1992, 27, 349–359. [Google Scholar] [CrossRef]
- Chen, X.; He, L.; Liu, B.; Tang, Y.; Tang, C. The uranium recovery from UO2 kernel production effluent. Nucl. Eng. Des. 2016, 310, 187–191. [Google Scholar] [CrossRef]
- Ghosh, B.; Ghosh, A.K.; Bindal, R.C.; Tewari, P.K. Studies on Concentration of Simulated Ammonium-diuranate Filtered Effluent Solution by Forward Osmosis Using Indigenously Developed Cellulosic Osmosis Membranes. Sep. Sci. Technol. 2015, 50, 324–331. [Google Scholar] [CrossRef]
- Ghosh, A.; Bindal, R.; Prabhakar, S.; Tewari, P. Concentration of ammonium diuranate effluent by reverse osmosis and forward osmosis membrane processes. Desalination Water Treat. 2014, 52, 432–437. [Google Scholar] [CrossRef]
- Biesheuvel, P.; Porada, S.; Elimelech, M.; Dykstra, J. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 2022, 647, 120221. [Google Scholar] [CrossRef]
- Prabhakar, S.; Balasubramaniyan, C.; Hanra, M.S.; Misra, B.M.; Roy, S.B.; Meghal, A.M.; Mukherjee, T.K. Performance Evaluation of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes for the Decontamination of Ammonium Diuranate Effluents. Sep. Sci. Technol. 1996, 31, 533–544. [Google Scholar] [CrossRef]
- Xing, C.; Bernicot, B.; Arrachart, G.; Pellet-Rostaing, S. Application of ultra/nano filtration membrane in uranium rejection from fresh and salt waters. Sep. Purif. Technol. 2023, 314, 123543. [Google Scholar] [CrossRef]
- Oliveira, E.E.d.M.; Barbosa, C.C.R.; Afonso, J.C. Stability of a nanofiltration membrane after contact with a low-level liquid radioactive waste. Quimica Nova 2013, 36, 1434–1440. [Google Scholar] [CrossRef]
- Favre-Réguillon, A.; Lebuzit, G.; Murat, D.; Foos, J.; Mansour, C.; Draye, M. Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res. 2008, 42, 1160–1166. [Google Scholar] [CrossRef]
- Raff, O.; Wilken, R.D. Removal of dissolved uranium by nanofiltration. Desalination 1999, 122, 147–150. [Google Scholar] [CrossRef]
- Long, N.; Andrea, S. Trace Contaminant Removal with Nanofiltration in Nanofiltration—Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2004; p. 37. [Google Scholar]
- Gureli, L.; Apak, R. Recovery of Uranium from Ammonium Uranyl Carbonate (AUC) Effluents by Combined Ion Ex-change and Membrane Separation. Sep. Sci. Technol. 2005, 39, 1857–1869. [Google Scholar] [CrossRef]
- Ladeira, A.; Morais, C. Uranium recovery from industrial effluent by ion exchange—column experiments. Miner. Eng. 2005, 18, 1337–1340. [Google Scholar] [CrossRef]
- Déon, S.; Dutournié, P.; Fievet, P.; Limousy, L.; Bourseau, P. Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: Influence of the filtrated solution and operating conditions. Water Res. 2013, 47, 2260–2272. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; p. 420. [Google Scholar]
- Van den Berg, G.B.; Racz, I.G.; Smolders, C.A. Mass transfer coefficients in cross-flow ultrafiltration. J. Membr. Sci. 1989, 47, 25–51. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Wang, R.; Yuan, Z.; Yan, T.; Zheng, W. The removal of uranium from simulated ammonium diuranate filtrate by nanofiltration. In Proceedings of the 25th International Conference on Nuclear Engineering, Shanghai, China, 2–6 July 2017; Amer Soc Mechanical Engineers: New York, NY, USA, 2017; Volume 7. [Google Scholar]
- Wang, R.; Yuan, Z.; Yan, T.; Zheng, W. Removal of uranium from ammonium nitrate solution by nanofiltration. Radiochim. Acta 2017, 105, 1015–1019. [Google Scholar] [CrossRef]
- Marchenko, A.; Truflandier, L.A.; Autschbach, J. Uranyl Carbonate Complexes in Aqueous Solution and Their Ligand NMR Chemical Shifts and 17O Quadrupolar Relaxation Studied by ab Initio Molecular Dynamics. Inorg. Chem. 2017, 56, 7384–7396. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Sep. Purif. Technol. 2009, 66, 194–201. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of Natural Hormones by Nanofiltration Membranes: Measurement, Modeling, and Mechanisms. Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
- Mehdipour, S.; Vatanpour, V.; Kariminia, H.-R. Influence of ion interaction on lead removal by a polyamide nanofiltration membrane. Desalination 2015, 362, 84–92. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Mikulášek, P. Influence of operating variables on the removal of heavy metal ions from aque-ous solutions by nanofiltration. Desalination 2014, 343, 67–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yuan, Z.; Meng, X.; Yan, T.; Zheng, W. Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration. Membranes 2025, 15, 133. https://doi.org/10.3390/membranes15050133
Wang R, Yuan Z, Meng X, Yan T, Zheng W. Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration. Membranes. 2025; 15(5):133. https://doi.org/10.3390/membranes15050133
Chicago/Turabian StyleWang, Runci, Zhongwei Yuan, Xiang Meng, Taihong Yan, and Weifang Zheng. 2025. "Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration" Membranes 15, no. 5: 133. https://doi.org/10.3390/membranes15050133
APA StyleWang, R., Yuan, Z., Meng, X., Yan, T., & Zheng, W. (2025). Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration. Membranes, 15(5), 133. https://doi.org/10.3390/membranes15050133