In Utero Electroporation for Manipulation of Specific Neuronal Populations
Abstract
:1. Introduction
2. Pros and Cons of Several Methods for Expressing Opsin in Neurons In Vivo
2.1. Genetically Modified Animals
2.2. Viral Vectors
2.3. In Utero Electroporation
3. Principle of Electroporation
3.1. Electropermeabilization of the Cell Membrane
3.2. Electrotransfer of Plasmid DNA
4. Region-Specific Expression Using In Utero Electroporation
5. Layer- and Cell Type-Specific Manipulation of Neurons
6. Combining In Utero Electroporation and Optogenetics
6.1. Neural Circuitry
6.2. Developmental and Neonatal Neural Pathways
6.3. Animal Behavior
7. Possible Future Directions
7.1. Dual in Utero Electroporation
7.2. Mosaic and Sparse Labeling of Neurons Using Inducible Gene Targeting
7.3. Targeting Astrocytes and Oligodendrocytes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Deisseroth, K.; Feng, G.; Majewska, A.K.; Miesenbock, G.; Ting, A.; Schnitzer, M.J. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 2006, 26, 10380–10386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, S.; Yu-Strzelczyk, J.; Pauls, D.; Constantin, O.M.; Gee, C.E.; Ehmann, N.; Kittel, R.J.; Nagel, G.; Gao, S. Synthetic light-activated ion channels for optogenetic activation and inhibition. Front. Neurosci. 2018, 12, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Packer, A.M.; Peterka, D.S.; Hirtz, J.J.; Prakash, R.; Deisseroth, K.; Yuste, R. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 2012, 9, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Carrillo-Reid, L.; Bando, Y.; Peterka, D.S.; Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. Elife 2018, 7, e32671. [Google Scholar] [CrossRef]
- Engelhard, C.; Chizhov, I.; Siebert, F.; Engelhard, M. Microbial halorhodopsins: Light-driven chloride pumps. Chem. Rev. 2018, 118, 10629–10645. [Google Scholar] [CrossRef]
- Chernov, M.M.; Friedman, R.M.; Chen, G.; Stoner, G.R.; Roe, A.W. Functionally specific optogenetic modulation in primate visual cortex. Proc. Natl. Acad. Sci. USA 2018, 115, 10505–10510. [Google Scholar] [CrossRef] [Green Version]
- Toso, A.; Fassihi, A.; Paz, L.; Pulecchi, F.; Diamond, M.E. A sensory integration account for time perception. PLoS Comput. Biol. 2021, 17, e1008668. [Google Scholar] [CrossRef]
- Rikhye, R.V.; Yildirim, M.; Hu, M.; Breton-Provencher, V.; Sur, M. Reliable sensory processing in mouse visual cortex through cooperative interactions between somatostatin and parvalbumin interneurons. J. Neurosci. 2021, 41, 8761–8778. [Google Scholar] [CrossRef]
- Saumweber, T.; Rohwedder, A.; Schleyer, M.; Eichler, K.; Chen, Y.; Aso, Y.; Cardona, A.; Eschbach, C.; Kobler, O.; Voigt, A.; et al. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat. Commun. 2018, 9, 1104. [Google Scholar] [CrossRef] [Green Version]
- Lyutova, R.; Selcho, M.; Pfeuffer, M.; Segebarth, D.; Habenstein, J.; Rohwedder, A.; Frantzmann, F.; Wegener, C.; Thum, A.S.; Pauls, D. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat. Commun. 2019, 10, 3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Wu, B.; Wu, G.; Yao, J.; Li, X.; Hu, K.; Zhou, Z.; Sui, J. Optogenetic inhibition of ventral hippocampal neurons alleviates associative motor learning dysfunction in a rodent model of schizophrenia. PLoS ONE 2019, 14, e0227200. [Google Scholar] [CrossRef] [PubMed]
- Jarrin, S.; Pandit, A.; Roche, M.; Finn, D.P. Differential role of anterior cingulate cortical glutamatergic neurons in pain-related aversion learning and nociceptive behaviors in male and female rats. Front. Behav. Neurosci. 2020, 14, 139. [Google Scholar] [CrossRef]
- Zemelman, B.V.; Lee, G.A.; Ng, M.; Miesenböck, G. Selective photostimulation of genetically ChARGed neurons. Neuron 2002, 33, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, S.P.; Mattis, J.; Yizhar, O.; Hegemann, P.; Deisseroth, K. Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 2008, 11, 631–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattis, J.; Tye, K.M.; Ferenczi, E.A.; Ramakrishnan, C.; O’Shea, D.J.; Prakash, R.; Gunaydin, L.A.; Hyun, M.; Fenno, L.E.; Gradinaru, V.; et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 2012, 9, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Broyles, C.; Robinson, P.; Daniels, M. Fluorescent, bioluminescent, and optogenetic approaches to study excitable physiology in the single cardiomyocyte. Cells 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Govorunova, E.G.; Sineshchekov, O.A.; Janz, R.; Liu, X.; Spudich, J.L. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 2015, 349, 647–650. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kato, H.E.; Yamashita, K.; Ito, S.; Inoue, K.; Ramakrishnan, C.; Fenno, L.E.; Evans, K.E.; Paggi, J.M.; Dror, R.O.; et al. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 2018, 561, 343–348. [Google Scholar] [CrossRef]
- Alberio, L.; Locarno, A.; Saponaro, A.; Romano, E.; Bercier, V.; Albadri, S.; Simeoni, F.; Moleri, S.; Pelucchi, S.; Porro, A.; et al. A light-gated potassium channel for sustained neuronal inhibition. Nat. Methods 2018, 15, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Arrenberg, A.B.; Stainier, D.Y.R.; Baier, H.; Huisken, J. Optogenetic control of cardiac function. Science 2010, 330, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Bernal Sierra, Y.A.; Rost, B.R.; Pofahl, M.; Fernandes, A.M.; Kopton, R.A.; Moser, S.; Holtkamp, D.; Masala, N.; Beed, P.; Tukker, J.J.; et al. Potassium channel-based optogenetic silencing. Nat. Commun. 2018, 9, 4611. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex. J. Physiol. 2018, 596, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, J.; De Stasi, A.M.; Deleuze, C.; Bigot, M.; Pazienti, A.; Aguirre, A.; Giugliano, M.; Ostojic, S.; Bacci, A. Modulation of coordinated activity across cortical layers by plasticity of inhibitory synapses. Cell Rep. 2020, 30, 630–641.e5. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Kawaguchi, Y. Pyramidal cell subtype-dependent cortical oscillatory activity regulates motor learning. Commun. Biol. 2021, 4, 495. [Google Scholar] [CrossRef]
- Fenno, L.E.; Deisseroth, K. Neocortical Circuit Interrogation with Optogenetics. In Optical Imaging of Neocortical Dynamics; Weber, B., Helmchen, F., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 175–188. [Google Scholar]
- Ainsworth, C. Agriculture: A new breed of edits. Nature 2015, 528, S15–S16. [Google Scholar] [CrossRef] [Green Version]
- Urnov, F.D.; Miller, J.C.; Lee, Y.-L.; Beausejour, C.M.; Rock, J.M.; Augustus, S.; Jamieson, A.C.; Porteus, M.H.; Gregory, P.D.; Holmes, M.C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005, 435, 646–651. [Google Scholar] [CrossRef]
- Blattner, G.; Cavazza, A.; Thrasher, A.J.; Turchiano, G. Gene editing and genotoxicity: Targeting the off-targets. Front. Genome Ed. 2020, 2, 613252. [Google Scholar] [CrossRef]
- Liu, Q.; Segal, D.J.; Ghiara, J.B.; Barbas, C.F. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 1997, 94, 5525–5530. [Google Scholar] [CrossRef] [Green Version]
- Beerli, R.R.; Barbas, C.F. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 2002, 20, 135–141. [Google Scholar] [CrossRef]
- Beerli, R.R.; Dreier, B.; Barbas, C.F. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 2000, 97, 1495–1500. [Google Scholar] [CrossRef] [Green Version]
- Bhakta, M.S.; Henry, I.M.; Ousterout, D.G.; Das, K.T.; Lockwood, S.H.; Meckler, J.F.; Wallen, M.C.; Zykovich, A.; Yu, Y.; Leo, H.; et al. Highly active zinc-finger nucleases by extended modular assembly. Genome Res. 2013, 23, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Okuya, K.; Takada, Y.; Kinoshita, M.; Yokoi, S.; Chisada, S.; Kamei, Y.; Tatsukawa, H.; Yamamoto, N.; Abe, H.; et al. Gene disruption of medaka (Oryzias latipes) orthologue for mammalian tissue-type transglutaminase (TG2) causes movement retardation. J. Biochem. 2020, 168, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Bogdanove, A.J.; Voytas, D.F. TAL effectors: Customizable proteins for DNA targeting. Science 2011, 333, 1843–1846. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, S.; Okuyama, T.; Kamei, Y.; Naruse, K.; Taniguchi, Y.; Ansai, S.; Kinoshita, M.; Young, L.J.; Takemori, N.; Kubo, T.; et al. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLoS Genet. 2015, 11, e1005009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Mussolino, C.; Morbitzer, R.; Lütge, F.; Dannemann, N.; Lahaye, T.; Cathomen, T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011, 39, 9283–9293. [Google Scholar] [CrossRef]
- Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; Leung, E.; Hinkley, S.J.; et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, 143–148. [Google Scholar] [CrossRef]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, B.L.; Breakefield, X.O. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci. 2003, 4, 353–364. [Google Scholar] [CrossRef]
- Tervo, D.G.R.; Hwang, B.-Y.; Viswanathan, S.; Gaj, T.; Lavzin, M.; Ritola, K.D.; Lindo, S.; Michael, S.; Kuleshova, E.; Ojala, D.; et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 2016, 92, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Mebatsion, T.; Schnell, M.J.; Cox, J.H.; Finke, S.; Conzelmann, K.K. Highly stable expression of a foreign gene from rabies virus vectors. Proc. Natl. Acad. Sci. USA 1996, 93, 7310–7314. [Google Scholar] [CrossRef] [Green Version]
- Mody, P.H.; Pathak, S.; Hanson, L.K.; Spencer, J.V. Herpes simplex virus: A versatile tool for insights into evolution, gene delivery, and tumor immunotherapy. Virol. Res. Treat. 2020, 11, 1178122X2091327. [Google Scholar] [CrossRef]
- Mohammadzadeh, Y.; Gholami, S.; Rasouli, N.; Sarrafzadeh, S.; Seyed Tabib, N.S.; Samiee Aref, M.H.; Abdoli, A.; Biglari, P.; Fotouhi, F.; Farahmand, B.; et al. Introduction of cationic virosome derived from vesicular stomatitis virus as a novel gene delivery system for sf9 cells. J. Liposome Res. 2017, 27, 83–89. [Google Scholar] [CrossRef]
- Fukuchi-Shimogori, T.; Grove, E.A. Neocortex patterning by the secreted signaling molecule FGF8. Science 2001, 294, 1071–1074. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, H.; Hirano, T.; Tagawa, Y. Evidence for activity-dependent cortical wiring: Formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J. Neurosci. 2007, 27, 6760–6770. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Dilhet, G.; Courchet, J. In utero cortical electroporation of plasmids in the mouse embryo. STAR Protoc. 2020, 1, 100027. [Google Scholar] [CrossRef] [PubMed]
- Comer, A.L.; Sriram, B.; Yen, W.W.; Cruz-Martín, A. A pipeline using bilateral in utero electroporation to interrogate genetic influences on rodent behavior. J. Vis. Exp. 2020, 159, e61350. [Google Scholar] [CrossRef] [PubMed]
- Tabata, H.; Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex. Neuroscience 2001, 103, 865–872. [Google Scholar] [CrossRef]
- Shimogori, T.; Ogawa, M. Gene application with in utero electroporation in mouse embryonic brain. Dev. Growth Differ. 2008, 50, 499–506. [Google Scholar] [CrossRef]
- Matsui, A.; Yoshida, A.C.; Kubota, M.; Ogawa, M.; Shimogori, T. Mouse in utero electroporation: Controlled spatiotemporal gene transfection. J. Vis. Exp. 2011, 54, e3024. [Google Scholar] [CrossRef] [Green Version]
- Dal Maschio, M.; Ghezzi, D.; Bony, G.; Alabastri, A.; Deidda, G.; Brondi, M.; Sato, S.S.; Zaccaria, R.P.; Di Fabrizio, E.; Ratto, G.M.; et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 2012, 3, 960. [Google Scholar] [CrossRef]
- Bullmann, T.; Arendt, T.; Frey, U.; Hanashima, C. A transportable, inexpensive electroporator for in utero electroporation. Dev. Growth Differ. 2015, 57, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, A. Animal models for schizophrenia via in utero gene transfer: Understanding roles for genetic susceptibility factors in brain development. Prog. Brain Res. 2009, 179, 9–15. [Google Scholar] [CrossRef]
- Kalebic, N.; Langen, B.; Helppi, J.; Kawasaki, H.; Huttner, W.B. In vivo targeting of neural progenitor cells in ferret neocortex by in utero electroporation. J. Vis. Exp. 2020, 159, e61171. [Google Scholar] [CrossRef]
- Ohmura, N.; Kawasaki, K.; Satoh, T.; Hata, Y. In vivo electroporation to physiologically identified deep brain regions in postnatal mammals. Brain Struct. Funct. 2015, 220, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Young-Pearse, T.; Sawa, A.; Kamiya, A. In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: From genes to circuits and behaviors. Neurosci. 2012, 18, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Fietz, S.A.; Huttner, W.B. Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr. Opin. Neurobiol. 2011, 21, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, A.; Ikawa, T.; Kasukawa, T.; Ueda, H.R.; Kurimoto, K.; Saitou, M.; Matsuzaki, F. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 2008, 135, 3113–3124. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.V.; Lui, J.H.; Parker, P.R.L.; Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010, 464, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. piggyBac transposon-mediated long-term gene expression in mice. Mol. Ther. 2010, 18, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Wu, X.; Li, G.; Han, M.; Zhuang, Y.; Xu, T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005, 122, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1, 841–845. [Google Scholar] [CrossRef]
- Weaver, J.C. Electroporation of biological membranes from multicellular to nano scales. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 754–768. [Google Scholar] [CrossRef]
- Mir, L.M.; Moller, P.H.; André, F.; Gehl, J. Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet. 2005, 54, 83–114. [Google Scholar] [CrossRef]
- Szczurkowska, J.; Cwetsch, A.W.; dal Maschio, M.; Ghezzi, D.; Ratto, G.M.; Cancedda, L. Targeted in vivo genetic manipulation of the mouse or rat brain by in utero electroporation with a triple-electrode probe. Nat. Protoc. 2016, 11, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Šatkauskas, S.; André, F.; Bureau, M.F.; Scherman, D.; Miklavčič, D.; Mir, L.M. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene Ther. 2005, 16, 1194–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rols, M.-P. Mechanism by which electroporation mediates DNA migration and entry into cells and targeted tissues. In Methods in Molecular Biology; Li, S., Ed.; Humana Press: Totowa, NJ, USA, 2008; Volume 423, pp. 19–33. [Google Scholar]
- Klenchin, V.A.; Sukharev, S.I.; Serov, S.M.; Chernomordik, L.V.; Chizmadzhev, Y. Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 1991, 60, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Sukharev, S.I.; Klenchin, V.A.; Serov, S.M.; Chernomordik, L.V.; Chizmadzhev, Y. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 1992, 63, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Morishita, R.; Iwamoto, I.; Nagata, K. Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 2014, 24, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, J.; Baumgart, N. Cortex-, hippocampus-, thalamus-, hypothalamus-, lateral septal nucleus- and striatum-specific in utero electroporation in the C57BL/6 mouse. J. Vis. Exp. 2016, 107, e53303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacary, E.; Haas, M.A.; Wildner, H.; Azzarelli, R.; Bell, D.M.; Abrous, D.N.; Guillemot, F. Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation. J. Vis. Exp. 2012, 65, e4163. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Ramos, R.L.; Paramasivam, M.; Siddiqi, F.; Ackman, J.B.; LoTurco, J.J. The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev. Neurosci. 2008, 30, 144–156. [Google Scholar] [CrossRef]
- Saito, T.; Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 2001, 240, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Hand, R.; Polleux, F. Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum. Neural Dev. 2011, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quiroga, I.; Chittajallu, R.; Gallo, V.; Haydar, T.F. Long-term, selective gene expression in developing and adult hippocampal pyramidal neurons using focal in utero electroporation. J. Neurosci. 2007, 27, 5007–5011. [Google Scholar] [CrossRef] [PubMed]
- Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 1971, 33, 471–476. [Google Scholar] [CrossRef]
- Greig, L.C.; Woodworth, M.B.; Galazo, M.J.; Padmanabhan, H.; Macklis, J.D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 2013, 14, 755–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrell, V.; Yoshimura, Y.; Callaway, E.M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods 2005, 143, 151–158. [Google Scholar] [CrossRef]
- LoTurco, J.; Manent, J.-B.; Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb. Cortex 2009, 19, i120–i125. [Google Scholar] [CrossRef] [Green Version]
- Bitzenhofer, S.H.; Ahlbeck, J.; Hanganu-Opatz, I.L. Methodological approach for optogenetic manipulation of neonatal neuronal networks. Front. Cell. Neurosci. 2017, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Petreanu, L.; Ghitani, N.; Ranade, S.; Hromádka, T.; Mainen, Z.; Svoboda, K. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008, 451, 61–64. [Google Scholar] [CrossRef]
- Gee, J.M.; Gibbons, M.B.; Taheri, M.; Palumbos, S.; Morris, S.C.; Smeal, R.M.; Flynn, K.F.; Economo, M.N.; Cizek, C.G.; Capecchi, M.R.; et al. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation. Front. Mol. Neurosci. 2015, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Petreanu, L.; Huber, D.; Sobczyk, A.; Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 2007, 10, 663–668. [Google Scholar] [CrossRef]
- Rolotti, S.V.; Blockus, H.; Sparks, F.T.; Priestley, J.B.; Losonczy, A. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron 2022, 110, 977–991.e4. [Google Scholar] [CrossRef]
- Petreanu, L.; Mao, T.; Sternson, S.M.; Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 2009, 457, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Adesnik, H.; Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 2010, 464, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Bitzenhofer, S.H.; Ahlbeck, J.; Wolff, A.; Wiegert, J.S.; Gee, C.E.; Oertner, T.G.; Hanganu-Opatz, I.L. Layer-specific optogenetic activation of pyramidal neurons causes beta–gamma entrainment of neonatal networks. Nat. Commun. 2017, 8, 14563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltramo, R.; D’Urso, G.; Dal Maschio, M.; Farisello, P.; Bovetti, S.; Clovis, Y.; Lassi, G.; Tucci, V.; De Pietri Tonelli, D.; Fellin, T. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 2013, 16, 227–234. [Google Scholar] [CrossRef]
- Ahlbeck, J.; Song, L.; Chini, M.; Bitzenhofer, S.H.; Hanganu-Opatz, I.L. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse. eLife 2018, 7, e33158. [Google Scholar] [CrossRef]
- Bitzenhofer, S.H.; Pöpplau, J.A.; Hanganu-Opatz, I. Gamma activity accelerates during prefrontal development. eLife 2020, 9, e56795. [Google Scholar] [CrossRef]
- Buzsáki, G.; Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Bitzenhofer, S.H.; Pöpplau, J.A.; Chini, M.; Marquardt, A.; Hanganu-Opatz, I.L. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 2021, 109, 1350–1364.e6. [Google Scholar] [CrossRef]
- Callier, T.; Brantly, N.W.; Caravelli, A.; Bensmaia, S.J. The frequency of cortical microstimulation shapes artificial touch. Proc. Natl. Acad. Sci. USA 2020, 117, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Salzman, C.D.; Britten, K.H.; Newsome, W.T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 1990, 346, 174–177. [Google Scholar] [CrossRef]
- Voigt, M.B.; Yusuf, P.A.; Kral, A. Intracortical microstimulation modulates cortical induced responses. J. Neurosci. 2018, 38, 7774–7786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Getz, S.A.; Bordey, A. Dual in utero electroporation in mice to manipulate two specific neuronal populations in the developing cortex. Front. Bioeng. Biotechnol. 2022, 9, 814638. [Google Scholar] [CrossRef] [PubMed]
- Mateos-White, I.; Fabra-Beser, J.; de Agustín-Durán, D.; Gil-Sanz, C. Double in utero electroporation to target temporally and spatially separated cell populations. J. Vis. Exp. 2020, 160, e61046. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.J.; Carrington, J.; Gerlach, L.R.; Taylor, K.L.; Richters, K.E.; Dent, E.W. Double UP: A dual color, internally controlled platform for in utero knockdown or overexpression. Front. Mol. Neurosci. 2020, 13, 82. [Google Scholar] [CrossRef]
- Duebel, J.; Marazova, K.; Sahel, J.-A. Optogenetics. Curr. Opin. Ophthalmol. 2015, 26, 226–232. [Google Scholar] [CrossRef]
- Han, X.; Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2007, 2, e299. [Google Scholar] [CrossRef]
- Wietek, J.; Beltramo, R.; Scanziani, M.; Hegemann, P.; Oertner, T.G.; Wiegert, J.S. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo. Sci. Rep. 2015, 5, 14807. [Google Scholar] [CrossRef] [Green Version]
- Kampasi, K.; English, D.F.; Seymour, J.; Stark, E.; McKenzie, S.; Vöröslakos, M.; Buzsáki, G.; Wise, K.D.; Yoon, E. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst. Nanoeng. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Marshel, J.H.; Kim, Y.S.; Machado, T.A.; Quirin, S.; Benson, B.; Kadmon, J.; Raja, C.; Chibukhchyan, A.; Ramakrishnan, C.; Inoue, M.; et al. Cortical layer–specific critical dynamics triggering perception. Science 2019, 365, eaaw5202. [Google Scholar] [CrossRef]
- Inoue, T.; Krumlauf, R. An impulse to the brain—using in vivo electroporation. Nat. Neurosci. 2001, 4, 1156–1158. [Google Scholar] [CrossRef]
- Rahim, A.A.; Wong, A.M.S.; Buckley, S.M.K.; Chan, J.K.Y.; David, A.L.; Cooper, J.D.; Coutelle, C.; Peebles, D.M.; Waddington, S.N. In utero gene transfer to the mouse nervous system. Biochem. Soc. Trans. 2010, 38, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Bland, K.M.; Casey, Z.O.; Handwerk, C.J.; Holley, Z.L.; Vidal, G.S. Inducing Cre-lox recombination in mouse cerebral cortex through in utero electroporation. J. Vis. Exp. 2017, 129, e56675. [Google Scholar] [CrossRef] [PubMed]
- Schohl, A.; Chorghay, Z.; Ruthazer, E.S. A simple and efficient method for visualizing individual cells in vivo by Cre-mediated single-cell labeling by electroporation (CREMSCLE). Front. Neural Circuits 2020, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Khoo, A.T.T.; Kim, P.J.; Kim, H.M.; Je, H.S. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system. Mol. Brain 2020, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Espinosa, J.S.; Hoseini, M.S.; Stryker, M.P. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc. Natl. Acad. Sci. USA 2019, 116, 21812–21820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houweling, A.R.; Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 2008, 451, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 2012, 207, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, F.; Chen, F.; Aron, A.W.; Fiondella, C.G.; Patel, K.; LoTurco, J.J. Fate mapping by piggyBac transposase reveals that neocortical GLAST+ progenitors generate more astrocytes than Nestin+ progenitors in rat neocortex. Cereb. Cortex 2014, 24, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Dinh Duong, T.A.; Hoshiba, Y.; Saito, K.; Kawasaki, K.; Ichikawa, Y.; Matsumoto, N.; Shinmyo, Y.; Kawasaki, H. FGF signaling directs the cell fate switch from neurons to astrocytes in the developing mouse cerebral cortex. J. Neurosci. 2019, 39, 6081–6094. [Google Scholar] [CrossRef] [Green Version]
- Hamabe-Horiike, T.; Kawasaki, K.; Sakashita, M.; Ishizu, C.; Yoshizaki, T.; Harada, S.-I.; Ogawa-Ochiai, K.; Shinmyo, Y.; Kawasaki, H. Glial cell type-specific gene expression in the mouse cerebrum using the piggyBac system and in utero electroporation. Sci. Rep. 2021, 11, 4864. [Google Scholar] [CrossRef]
- Perea, G.; Yang, A.; Boyden, E.S.; Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 2014, 5, 3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Liu, Y.; Tu, J.; Wan, J.; Zhang, J.; Wu, B.; Chen, S.; Zhou, J.; Mu, Y.; Wang, L. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat. Commun. 2014, 5, 5627. [Google Scholar] [CrossRef] [PubMed]
- Mederos, S.; Hernández-Vivanco, A.; Ramírez-Franco, J.; Martín-Fernández, M.; Navarrete, M.; Yang, A.; Boyden, E.S.; Perea, G. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 2019, 67, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.A.; Perkins, J.M.; Beaudoin, G.M.; Cook, N.B.; Quraishi, S.A.; Szoeke, E.A.; Thangamani, K.; Tschumi, C.W.; Wanat, M.J.; Maroof, A.M.; et al. Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat. Commun. 2019, 10, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashiro, K.; Ikegaya, Y.; Matsumoto, N. In Utero Electroporation for Manipulation of Specific Neuronal Populations. Membranes 2022, 12, 513. https://doi.org/10.3390/membranes12050513
Yamashiro K, Ikegaya Y, Matsumoto N. In Utero Electroporation for Manipulation of Specific Neuronal Populations. Membranes. 2022; 12(5):513. https://doi.org/10.3390/membranes12050513
Chicago/Turabian StyleYamashiro, Kotaro, Yuji Ikegaya, and Nobuyoshi Matsumoto. 2022. "In Utero Electroporation for Manipulation of Specific Neuronal Populations" Membranes 12, no. 5: 513. https://doi.org/10.3390/membranes12050513
APA StyleYamashiro, K., Ikegaya, Y., & Matsumoto, N. (2022). In Utero Electroporation for Manipulation of Specific Neuronal Populations. Membranes, 12(5), 513. https://doi.org/10.3390/membranes12050513