The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review
Abstract
:1. Introduction
2. Traditional and Novel Polymeric Materials Used in Preparation of PIMs
3. Polymer Inclusion Membrane Plasticizers
4. Carriers Used in PIMs
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bankole, M.T.; Abdulkareem, A.S.; Mohammed, I.A.; Ochigbo, S.S.; Tijani, J.O.; Abubakre, O.K.; Roos, W.D. Selected Heavy Metals Removal From Electroplating Wastewater by Purified and Polyhydroxylbutyrate Functionalized Carbon Nanotubes Adsorbents. Sci. Rep. 2019, 9, 4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Chen, Y.; Xu, L.; Zhang, Y.; Li, H. Research and development on industrial heavy metal wastewater treatment technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012051. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process. Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals; Saleh, H.E.M., Aglan, R.F., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- López, Y.C.; Ortega, G.A.; Reguera, E. Hazardous ions decontamination: From the element to the material. Chem. Eng. J. Adv. 2022, 11, 100297. [Google Scholar] [CrossRef]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011.
- Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 29 September 2022).
- Nazir, M.S.; Palvasha, B.A.; Tahir, Z.; ul Hassan, S.; Ali, Z.; Akhtar, M.N.; Azam, K.; Abdullah, M.A. An Overview on Eco-Friendly Polymer Composites for Heavy Metal Ion Remediation. Curr. Anal. Chem. 2021, 17, 737–753. [Google Scholar] [CrossRef]
- Adam, A.M.; Saad, H.A.; Atta, A.A.; Alsawat, M.; Hegab, M.S.; Altalhi, T.A.; Refat, M.S. An Environmentally Friendly Method for Removing Hg(II), Pb(II), Cd(II) and Sn(II) Heavy Metals from Wastewater Using Novel Metal-Carbon-Based Composites. Crystals 2021, 11, 882. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S.P. Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes 2021, 9, 752. [Google Scholar] [CrossRef]
- Zeng, L.; Yi, Q.; Peng, X.; Huang, Z.; Van der Bruggen, B.; Zhang, Y.; Kuang, Y.; Ma, Y.; Tang, K. Modelling and optimization of a new complexing retardant-enhanced polymer inclusion membrane system for highly selective separation of Zn2+ and Cu2+. Sep. Purif. Technol. 2022, 292, 121056. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Vital, J.; Sousa, J.M. Handbook of Membrane Reactors. Fundamental Materials Science, Design and Optimisation; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2013; Volume 1, pp. 3–41. [Google Scholar]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Kolev, S.D.; Inês, M.; Almeida, G.S.; Cattrall, R.W. Polymer Inclusion Membranes. In Smart Materials for Sensing and Separation; de la Guardia, M., Esteve-Turrillas, F.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Polymer inclusion membranes (PIMs) in chemical analysis—A review. Anal. Chim. Acta 2017, 987, 1–14. [Google Scholar] [CrossRef]
- Olasupo, A.; Suah, F.B.M. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. J. Hazard. Mater. 2021, 406, 124317. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. Membranes 2021, 11, 426. [Google Scholar] [CrossRef]
- Alcalde, B.; Anticó, E.; Fontàs, C. Fluoride removal from natural waters by polymer inclusion membranes. J. Membr. Sci. 2022, 644, 120161. [Google Scholar] [CrossRef]
- Zulkefeli, N.S.W.; Weng, S.K.; Abdul Halim, N.S. Removal of Heavy Metals by Polymer Inclusion Membranes. Curr. Pollution Rep. 2018, 4, 84–92. [Google Scholar] [CrossRef]
- Keskin, B.; Zeytuncu-Gökoğlu, B.; Koyuncu, I. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere 2021, 279, 130604. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Rao, M.D.; Meshram, A.; Verma, H.R.; Singh, K.K. Potential of polymer inclusion membrane process for selective recovery of metal values from waste printed circuit boards: A review. J. Clean Prod. 2020, 265, 121621. [Google Scholar] [CrossRef]
- Meng, X.; Wang, C.; Zhou, P.; Xin, X.; Wang, L. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Supported ionic liquid and polymer inclusion membranes for metal separation. Sep. Purif. Rev. 2022, 51, 1. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Zioui, D.; Aoudjit, L.; Aburideh, H.; Tigrine, Z. Elaboration and characterization of organic membranes: Effect of polymer blending on competitive transport of metal ions. Cellulose Chem. Technol. 2022, 56, 353–359. [Google Scholar] [CrossRef]
- Sedkaoui, Y.; Abdellaoui, N.; Arous, O.; Lounici, H.; Nasrallah, N.; Szymczyk, A. Elaboration and characterization of multilayer polymeric membranes: Effect of the chemical nature of polymers. J. Polym. Eng. 2021, 41, 127–136. [Google Scholar] [CrossRef]
- Eljaddi, T.; Lebrun, L.; Hlaibi, M. Review on Mechanism of Facilitated Transport on Liquid Membranes. J. Membr. Sci. Res. 2017, 3, 199–208. [Google Scholar] [CrossRef]
- Vera, R.; Anticó, E.; Eguiazábal, J.I.; Aranburu, N.; Fontàs, C. First Report on a Solvent-Free Preparation of Polymer Inclusion Membranes with an Ionic Liquid. Molecules 2019, 24, 1845. [Google Scholar] [CrossRef]
- Nitti, F.; Selan, O.T.E.; Hoque, B.; Tambaru, D.; Djunaidi, M.C. Improving the Performance of Polymer Inclusion Membranes in Separation Process Using Alternative Base Polymers: A Review. Indones. J. Chem. 2022, 22, 284–302. [Google Scholar] [CrossRef]
- Safarpour, M.; Safikhani, A.; Vatanpou, V. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives. Sep. Purif. Technol. 2021, 279, 119678. [Google Scholar] [CrossRef]
- Bahrami, S.; Dolatyari, L.; Shayani-Jam, H.; Yaftian, M.R. Membrane extraction of V(V) by an oleic acid plasticized poly(vinyl chloride)/Aliquat® 336 polymer inclusion membrane. J. Appl. Polym. Sci. 2022, 139, 52434. [Google Scholar] [CrossRef]
- Kazemi, D.; Yaftian, M.R. Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid. Sep. Purif. Technol. 2022, 285, 120375. [Google Scholar] [CrossRef]
- Kazemi, D.; Yaftian, M.R.; Kolev, S.D. Selective extraction of Bi(III) from sulfate solutions by a poly(vinyl chloride) based polymer inclusion membrane incorporating bis(2-ethylhexyl)phosphoric acid as the extractant. React. Funct. Polym. 2021, 164, 104935. [Google Scholar] [CrossRef]
- Radzymińska-Lenarcik, E.; Witt, K. The application of acetylacetone for the separation of heavy metals in roadside soil belts by extraction methods. Desalination Water Treat. 2020, 186, 191–198. [Google Scholar] [CrossRef]
- Witt, K.; Radzymińska-Lenarcik, E. Study on effectiveness of PVC/beta-diketone sorbent in removing residue of Zn(II), Cr(III) and Ni(II) from post-galvanic wastewater. Desalin. Water Treat. 2020, 186, 199–205. [Google Scholar] [CrossRef]
- Witt, K.; Bożejewicz, D.; Kaczorowska, M.A. N,N’-Bis(salicylidene)ethylenediamine (Salen) as an Active Compound for the Recovery of Ni(II), Cu(II), and Zn(II) Ions from Aqueous Solutions. Membranes 2020, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Witt, K.; Kaczorowska, M.A.; Bożejewicz, D.; Urbaniak, W. Efficient Recovery of Noble Metal Ions (Pd2+, Ag+, Pt2+, and Au3+) from Aqueous Solutions Using N,N’-Bis(salicylidene)ethylenediamine (Salen) as an Extractant (Classic Solvent Extraction) and Carrier (Polymer Membranes). Membranes 2021, 11, 863. [Google Scholar] [CrossRef]
- Qiu, X.; Tang, J.; Tan, J.; Hu, H.; Ji, X.; Hu, J. Selective recovery of Cu(II) through polymer inclusion membranes mediated with 2-aminomethylpyridine derivatives. Trans. Nonferrous Met. Soc. China 2021, 31, 3591–3601. [Google Scholar] [CrossRef]
- Witt, K.; Urbaniak, W.; Kaczorowska, M.A.; Bożejewicz, D. Simultaneous Recovery of Precious and Heavy Metal Ions from Waste Electrical and Electronic Equipment (WEEE) Using Polymer Films Containing Cyphos IL 101. Polymers 2021, 13, 1454. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, C.; Zhang, D.; Shen, S. Selective metal ion transport through polymer inclusion membrane containing surfactin as carrier reagents. J. Chin. Chem. Soc. 2020, 67, 478–483. [Google Scholar] [CrossRef]
- Ghaderi, N.; Dolatyari, L.; Kazemi, D.; Sharafi, H.R.; Shayani-Jam, H.; Yaftian, M.R. Application of a polymer inclusion membrane made of cellulose triacetate base polymer and trioctylamine for the selective extraction of bismuth(III) from chloride solutions. J. Appl. Polym. Sci. 2022, 139, 51480. [Google Scholar] [CrossRef]
- Ncib, S.; Barhoumi, A.; Bouguerra, W.; Larchet, C.; Dammak, L.; Hamrouni, B.; Elaloui, E. Copper(II) Removal from Synthetic Wastewater Solutions Using Supported Liquid Membrane and Polymer Inclusion Membrane. J. Environ. Eng. 2020, 146, 04019113. [Google Scholar] [CrossRef]
- García-Beleño, J.; Rodríguez de San Miguel, E. Optimization of Cr(III) transport in a polymer inclusion membrane system through experimental design strategies. Chem. Pap. 2022, 76, 2235–2247. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Maslowska, K.; Urbaniak, W. Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles. Membranes 2022, 12, 16. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Pyszka, I.; Ulewicz, M. Separation of Zn(II), Cr(III), and Ni(II) Ions Using the Polymer Inclusion Membranes Containing Acetylacetone Derivative as the Carrier. Membranes 2020, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Pyszka, I.; Radzyminska-Lenarcik, E. New Polymer Inclusion Membrane in the Separation of Nonferrous Metal Ion from Aqueous Solutions. Membranes 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Radzyminska-Lenarcik, E.; Ulewicz, M.; Pyszka, I. Application of Polymer Inclusion Membranes Doped with Alkylimidazole to Separation of Silver and Zinc Ions from Model Solutions and after Battery Leaching. Materials 2020, 13, 3103. [Google Scholar] [CrossRef] [PubMed]
- Zawierucha, I.; Nowik-Zajac, A.; Lagiewka, J.; Malina, G. Separation of Mercury(II) from Industrial Wastewater through Polymer Inclusion Membranes with Calix[4]pyrrole Derivative. Membranes 2022, 12, 492. [Google Scholar] [CrossRef]
- Nowik-Zajac, A.; Zawierucha, I.; Kozlowski, C. Selective Transport of Ag(I) through a Polymer Inclusion Membrane Containing a Calix[4]pyrrole Derivative from Nitrate Aqueous Solutions. Int. J. Mol. Sci. 2020, 21, 5348. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zajac, A.; Malina, G. Selective Removal of As(V) Ions from Acid Mine Drainage Using Polymer Inclusion Membranes. Minerals 2020, 10, 909. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Ebenezer, O.I.; Shoparwe, N.F.; Ismail, S. Graphene Oxide-Doped Polymer Inclusion Membrane for Remediation of Pharmaceutical Contaminant of Emerging Concerns: Ibuprofen. Membranes 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Anticó, E.; Vera, R.; Vázquez, F.; Fontàs, C.; Lu, C.; Ros, J. Preparation and Characterization of Nanoparticle-Doped Polymer Inclusion Membranes. Application to the Removal of Arsenate and Phosphate from Waters. Materials 2021, 14, 878. [Google Scholar] [CrossRef] [PubMed]
- Maiphetlho, K.; Shumbula, N.; Motsoane, N.; Chimuka, L.; Richards, H. Evaluation of silver nanocomposite polymer inclusion membranes (PIMs) for trace metal transports: Selectivity and stability studies. J. Water Process. Eng. 2020, 37, 101527. [Google Scholar] [CrossRef]
- Tutkun, O.; Kaparova, K. Selective separation of gallium from various ions by polymer inclusion membranes based on CTA/PVC blend using TOPO as carrier. Korean J. Chem. Eng. 2022, 39, 1011–1019. [Google Scholar] [CrossRef]
- Singh, S.; Varghese, A.M.; Reddy, K.S.K.; Romanos, G.E.; Karanikolos, G.N. Polysulfone Mixed-Matrix Membranes Comprising Poly(ethylene glycol)-Grafted Carbon Nanotubes: Mechanical Properties and CO2 Separation Performance. Ind. Eng. Chem. Res. 2021, 60, 11289–11308. [Google Scholar] [CrossRef]
- Kunene, P.; Akinbami, O.; Motsoane, N.; Tutu, H.; Chimuka, L.; Richards, H. Feasibility of Polysulfone as Base Polymer in a Polymer Inclusion Membrane: Synthesis and Characterisation. J. Membr. Sci. Res. 2020, 6, 203–210. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Colasse, L.; Fatyeyeva, K. Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336. Sep. Purif. Technol. 2020, 248, 117038. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Chen, L.; Zou, D.; Liu, C. A polymer inclusion membrane functionalized by di(2-ethylhexyl) phosphinic acid with hierarchically ordered porous structure for Lutetium(III) transport. J. Membr. Sci. 2020, 593, 117458. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Zou, D. A preliminary study of polymer inclusion membrane for lutetium(III) separation and membrane regeneration. J. Rare Earths 2021, 39, 1256–1263. [Google Scholar] [CrossRef]
- Bashiri, A.; Nikzad, A.; Maleki, R.; Asadnia, M.; Razmjou, A. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection. Membranes 2022, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Z.; Chen, J.; Kallem, P.; Banat, F.; Qiu, H. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ. Chem. Eng. 2022, 10, 107104. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Mohsen, S.; Abdullah, T.A.; Le, P.-C.; Sebestyen, V.; Sluser, B.; Cretescu, I. Scandium Recovery Methods from Mining, Metallurgical Extractive Industries, and Industrial Wastes. Materials 2022, 15, 2376. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhu, G.; Huang, Q.; Yin, C.; Jiang, X.; Yang, X. Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. J. Mol. Liq. 2021, 343, 117670. [Google Scholar] [CrossRef]
- Bahrami, S.; Yaftian, M.R.; Najvak, P.; Dolatyari, L.; Shayani-Jam, H.; Kolev, S.D. PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr(VI) from sulfate solutions. Sep. Purif. Technol. 2020, 250, 117251. [Google Scholar] [CrossRef]
- Hedwig, S.; Kraus, M.; Amrein, M.; Stiehm, J.; Constable, E.C.; Lenz, M. Recovery of scandium from acidic waste solutions by means of polymer inclusion membranes. Hydrometallurgy 2022, 213, 105916. [Google Scholar] [CrossRef]
- Gunasegaran, M.; Shoparwe, N.E.; Mohamad, M.; Ahmad, A.L.; Abdullah, A.Z.; Zainuddin, N. Effect of aliquat 336 in PVDF-Co-HFP polymer inclusion membrane for silver ion removal. AIP Conf. Proceed. 2022, 2454, 030020. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Lanel, C.; Fatyeyeva, K. Novel Poly(Vinylidene Fluoride)/Montmorillonite Polymer Inclusion Membrane: Application to Cr(VI) Extraction from Polluted Water. Membranes 2021, 11, 682. [Google Scholar] [CrossRef]
- Hoque, B.; Kolev, S.D.; Cattrall, R.W.; Gopakumar, T.G.; Almeida, M.I.G.S. A cross-linked polymer inclusion membrane for enhanced gold recovery from electronic waste. Waste Manag. 2021, 124, 54–62. [Google Scholar] [CrossRef]
- Duan, H.; Zhu, X.-N. Recent advances in recovering technology for recycling gold from waste printed circuit boards: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 1640–1659. [Google Scholar] [CrossRef]
- Hoque, B.; Almeida, M.I.G.S.; Cattrall, R.W.; Gopakumar, T.G.; Kolev, S.D. Improving the extraction performance of polymer inclusion membranes by cross-linking their polymeric backbone. React. Funct. Polym. 2021, 160, 104813. [Google Scholar] [CrossRef]
- Bensaadi, S.; Drai, N.; Arous, O.; Berbar, Y.; Hammache, Z.E.; Amara, M.; Van der Bruggen, B. A Study of Chromium (VI) Ions Fixation and Transport using Polymer Inclusion Membrane Containing D2EHPA as Complexing Agent. J. Membr. Sci. Res. 2022, 8, 531653. [Google Scholar] [CrossRef]
- Kazemzadeh, H.; Karimi-Sabet, J.; Darian, J.T.; Adhami, A. Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution. Sep. Purif. Technol. 2020, 251, 117298. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Li, Y.; Fu, M.; Liu, D.; Chen, Q. Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating Copper(II) transport through polymer inclusion membranes. J. Membr. Sci. 2016, 501, 228–235. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C.S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Hu, F.; Hu, H.; Tang, J.; Qiu, X.; Jin, W.; Hu, J. Plasticization-induced oriented micro-channels within polymer inclusion membranes for facilitating Cu(II) transport. J. Mol. Liq. 2020, 301, 112457. [Google Scholar] [CrossRef]
- Meziani, R.; Mitiche, L.; Fontàs, C.; Sahmoune, A. Polymer inclusion membranes with ionic liquids for the recovery of the technology-critical element Bi(III). Chem. Eng. Process. Process Intensif. 2022, 175, 108911. [Google Scholar] [CrossRef]
- Szczepański, P.; Guo, H.; Dzieszkowski, K.; Rafiński, Z.; Wolan, A.; Fatyeyeva, K.; Kujawa, J.; Kujawski, W. New reactive ionic liquids as carriers in polymer inclusion membranes for transport and separation of Cd(II), Cu(II), Pb(II), and Zn(II) ions from chloride aqueous solutions. J. Membr. Sci. 2021, 638, 119674. [Google Scholar] [CrossRef]
- Konczyk, J.; Ciesielski, W. Calixresorcin[4]arene-Mediated Transport of Pb(II) Ions through Polymer Inclusion Membrane. Membranes 2021, 11, 285. [Google Scholar] [CrossRef]
- Verschueren, K. Handbook of Environmental Data on Organic Chemicals, 3rd ed.; Van Nostrand Reinhold: New York, NY, USA, 1996; pp. 864–865. [Google Scholar]
- Bożejewicz, D.; Witt, K.; Kaczorowska, M.A.; Urbaniak, W.; Ośmiałowski, B. The Application of 2,6-Bis(4-Methoxybenzoyl)-Diaminopyridine in Solvent Extraction and Polymer Membrane Separation for the Recovery of Au(III), Ag(I), Pd(II) and Pt(II) Ions from Aqueous Solutions. Int. J. Mol. Sci. 2021, 22, 9123. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Li, H.; Zhang, X.; Zhang, H.; Wang, G.; Zhang, Y. Simultaneous Separation and Recovery of Gold and Copper from Electronic Waste Enabled by an Asymmetric Electrochemical System. ACS Appl. Mater. Interfaces 2022, 14, 9544–9556. [Google Scholar] [CrossRef] [PubMed]
- Mancilla-Rico, A.; de Gyves, J.; Rodríguez de San Miguel, E. Structural Characterization of the Plasticizers’ Role in Polymer Inclusion Membranes Used for Indium (III) Transport Containing IONQUEST® 801 as Carrier. Membranes 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Uragami, T. Chapter 20: Carrier transport. In Science and Technology of Separation Membranes; Wiley: Chichester, UK, 2017; pp. 587–634. [Google Scholar]
- Hammache, Z.; Bensaadi, S.; Berbar, Y.; Audebrand, N.; Szymczyk, A.; Amara, M. Recovery of rare earth elements from electronic waste by diffusion dialysis. Sep. Purif. Technol. 2021, 254, 117641. [Google Scholar] [CrossRef]
- Ramprasad, C.; Gwenzi, W.; Chaukura, N.; Azelee, N.I.W.; Rajapaksha, A.U.; Naushad, M.; Rangabhashiyam, S. Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chem. Eng. J. 2022, 442, 135992. [Google Scholar] [CrossRef]
- Campo-Cobo, L.F.; Pérez-Urbano, M.L.; Gutiérrez-Valencia, T.M.; Hoyos-Saavedra, O.L.; Cuervo-Ochoa, G. Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron—Accepting Substituents. J. Inorg. Organomet. Polym. 2021, 31, 2654–2664. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Application of Hydrophobic Alkylimidazoles in the Separation of Non-Ferrous Metal Ions across Plasticised Membranes—A Review. Membranes 2020, 10, 331. [Google Scholar] [CrossRef]
- Fabbrizzi, L. Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. J. Org. Chem. 2020, 85, 12212–12226. [Google Scholar] [CrossRef]
- Buldurun, K.; Özdemir, M. Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. J. Mol. Struc. 2020, 1202, 127266. [Google Scholar] [CrossRef]
- Zeng, Y.; Lan, T.; Li, M.; Yuan, G.; Li, F.; Liao, J.; Yang, J.; Yang, Y.; Liu, N. Removal of Co(II) from Aqueous Solutions by Pyridine Schiff Base-Functionalized Zirconium-Based MOFs: A Combined Experimental and DFT Study on the Effect of ortho-, meta-, and para-Substitution. J. Chem. Eng. Data 2021, 66, 749–760. [Google Scholar] [CrossRef]
- Tighadouini, S.; Roby, O.; Radi, S.; Lakbaibi, Z.; Saddik, R.; Mabkhot, Y.N.; Almarhoon, Z.M.; Garcia, Y. A Highly Efficient Environmental-Friendly Adsorbent Based on Schiff Base for Removal of Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2021, 26, 5164. [Google Scholar] [CrossRef] [PubMed]
- Bożejewicz, D.; Ośmiałowski, B.; Kaczorowska, M.A.; Witt, K. 2,6-Bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-NMe2) Derivatives for the Removal of Cu(II), Ni(II), Co(II), and Zn(II) Ions from Aqueous Solutions in Classic Solvent Extraction and a Membrane Extraction. Membranes 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Fontàs, C.; Vera, R.; Anticó, E.; Martínez de Yuso, M.d.V.; Rodríguez-Castellón, E.; Benavente, J. New Insights on the Effects of Water on Polymer Inclusion Membranes Containing Aliquat 336 Derivatives as Carriers. Membranes 2022, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Challa, Y.; Rodríguez de San Miguel, E.; de Gyves, J. Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes. Water Air Soil Pollut. 2020, 231, 33. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zająć, A.; Kozłowski, C. Application of Cr(VI) transport across the polymer inclusion membrane with calixresorcin[4]arene derivative as ion carrier. Sep. Sci. Technol. 2020, 55, 2204–2210. [Google Scholar] [CrossRef]
- Zheng, D.; Hua, D.; Hong, Y.; Ibrahim, A.-R.; Yao, A.; Pan, J.; Zhan, G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. Membranes 2020, 10, 395. [Google Scholar] [CrossRef]
- Makówka, A.; Pośpiech, B. Studies on extraction and permeation of lanthanum(III) and cerium(III) using cyphos IL 104 as extractant and ion carrier. Sep. Sci. Technol. 2020, 55, 2193–2203. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Xu, L.; Deng, T.; Zhang, C.; Xu, W.; Zhang, W. Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines. Membranes 2022, 12, 839. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, X.; He, Q.; Deng, T.; Zhang, C.; Zhang, W. Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. Sep. Purif. Technol. 2022, 288, 120626. [Google Scholar] [CrossRef]
- Paredes, C.; Rodríguez de San Miguel, E. Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion membrane and application to seawater. Desalination 2020, 487, 114500. [Google Scholar] [CrossRef]
Carrier/Plasticizer | Type of Metal Ions/ Feed Solution | Main Advantages | Year of Publication/ Reference |
---|---|---|---|
Aliquat® 336/ oleic acid | V(V)/ model solution containing vanadium ions and Na2SO4 (pH = 2.5) and model solution with V(V) and the mixture of Al(III), Co(II), Cu(II), Fe(II), Mn(II) and Ni(II) ions (composition corresponding to leachate of spent alumina hydrodesulfurization catalysts). | PIM enables the selective and efficient extraction of V(V) ions from both single- and multi-metal ion solutions (extraction of ~73% and ~71% (in two-step process) of V(V) ions, respectively). Potentially suitable for removing V(V) ions from spent alumina hydrodesulfurization catalysts. | 2022 [37] |
D2EHPA/ TBP, TEHP, DBP, and 2-NPOE | Bi(III)/ model solutions containing Bi(III) ions and Na2SO4 (pH = 1.3) and model solutions with Bi(III) and Cd(II), Co(II), Cu(II), Mn(II), Ni(II), Zn(II), Al(III), Cr(III), Fe(III) and Mo(VI) ions. | The presence of TBP, TEHP, DBP or 2-NPOE in the PIM composition did not affect the transport efficiency. PIM (with no plasticizers) demonstrated selectivity towards Bi(III) over Cd(II), Co (II), Cu(II), Mn(II), Ni(II), Zn(II), Al(III), Cr(III), Fe(III) and Mo(VI). PIM was stable in 10 transport experiments. | 2022 [38] |
D2EHPA | Bi(III)/ model sulfate solution containing Bi(III) ions (pH = 1.3) and model Bi(III) solution with Cu(II), Zn(II), Mn(II), Co(II), Ni(II), Cd(II), Al(III), Cr(III) and Fe(III) ions with addition of NaF. | A plasticizer-free PIM extracted with high selectivity Bi(III) ions from single- and multi-metal ion solutions (extraction of ~99% and from ~98% to ~61% (depending on the composition of the mixture) of bismuth ions, respectively). PIM exhibited excellent performance stability in 15 extraction/back-extraction cycles. | 2021 [39] |
Acetylacetone/ DEHA | Zn(II), Cu(II), Cr(III) and Ni(II)/ model solutions (pH = 7.8) containing ammonia and metal amounts corresponding to those determined in samples originating from the roadside soil belts. | The designed PIM allowed for effective removal of all examined metal ions from the solution, except for nickel ions. The extraction coefficients of Zn(II), Cu(II), Cr(III) and Ni(II) were 94%, 78%, 50% and 9%, respectively. PIM can potentially be used for removal of heavy metals from the soils located along expressways. | 2020 [40] |
3-propyl-pentane-2,4-dione/ DEHA | Zn(II), Ni(II) and Cr(III)/ three different types of post-galvanic wastewater containing zinc or nickel or nickel–chromium ions (pH = 7.28, 7.32 and 7.97). | PIM allowed for the effective removal of zinc and chromium ions (75–78% of Zn(II) and 62–64% of Cr(III) ions); however, proper treatment of wastewater required frequent replacement of PIMs. | 2020 [41] |
Salen/ DEHA | Ni(II), Cu(II) and Zn(II)/ model basic aqueous solutions containing metal ions and ammonia (pH = 12.5). | Sorption on polymer membranes with salen as a carrier was especially effective for removing copper(II) ions from aqueous solutions (extraction of Cu(II) ions from ~99% to ~67%, depending on experimental conditions). PIMs were not suitable for the transport of the investigated metal ions. | 2020 [42] |
Salen/ DEHA | Pd(II), Ag(I), Pt(II) and Au(III)/ model single- and multi-metal solutions containing metal ions and ammonia (pH = 12.5). | The effectiveness of polymer membranes with salen was very high for sorption processes. The percentages of sorption were 93.23% for Ag(I) ions, ~75% for Au(III) ions, ~69% and ~66% for Pd(II) and Pt(II) ions in single-component solutions ~93%, ~84%, ~81% and ~48% for Pd(II), Au(III), Ag(I) and Pt(II) ions in multi-metal solutions. Desorption processes were also effective, and membranes were used several times. | 2021 [43] |
2-amino-methylpyridine derivatives/ DOP, DEHA or 2-NPOE | Cu(II)/ model aqueous solutions with metal ions and hydrochloric acid (pH = 4.5). | The hydrophobic modification of 2-aminomethylpyridine derivatives boosted the selective transport of copper ions by designed PIMs and improved the stability of membrane. | 2021 [44] |
Cyphos IL 101/ DEHA | Ni(II), Zn(II), Co(II), Cu(II), Sn(II), Pb(II), Ag(I), Pd(II) and Au(III)/ solution obtained by leaching computer pins with concentrated nitric (V) acid and aqua regia. | Polymer films allowed for the efficient recovery of precious metals (~99% of Au(III), ~79% of Ag(I) and ~64% of Pd(II)) and after regeneration can be successfully used several times. | 2021 [45] |
Carrier/Plasticizer | Type of Metal Ions/ Feed Solution | Main Advantages | Year of publication/ Reference |
---|---|---|---|
SF/ 2-NPOE | Ni(II), Cd(II), Co(II), Pb(II), Cu(II) and Mg(II)/ model solutions with metal ions and nitric acid (pH = 5). | Metal cations were effectively transported through the PIM in the order of Ni(II) > Ca(II) > Co(II) > Pb(II) > Cu(II) > Mg(II). Excellent durability of PIM (5 days of successive metal cation transportation). | 2020 [46] |
TOA/ TBP, 2-NPOE, DBP or TEHP | Bi(III)/ model solutions with various ions, including metal ions and hydrochloric acid. | High selectivity of PIMs towards Bi(III) ions (extraction efficiency > 97%) over Cu(II), Pb(II), Zn(II), Ni(II), Co(II), Cd(II), Fe(III), Cr(III), Mo(VI), W(VI), NO3− and SO42−. | 2022 [47] |
D2EHPA/ acetylated kraft lignin as filler, no plasticizer | Cu(II)/ model solutions with metal ions and nitric acid (pH = 4.5). | High stability of PIM and efficient recovery of Cu(II) (transport of 74% of copper ions) | 2020 [48] |
D2EHPA/ 2-NPOE | Cr(III)/ model solution containing different interfering ions (SO42−, Cl−, Na+, K+ and Ca2+) and HCl (pH = 4). | Efficient recovery of Cr(III) ions (~96%), slightly lower in the presence of interfering ions, potentially a future application of the developed system to real samples. | 2022 [49] |
2-alkylimidazoles (alkyl = methyl, ethyl, propyl and butyl)/ 2-NPPE | Cu(II), Zn(II), Cd(II) and Ni(II)/ model solutions with the mixture of metal ions and tetra-methylammonium hydroxide (pH = 6). | Efficient recovery of metal ions decreasing in sequence Cu(II) > Zn(II) > Co(II) > Ni(II). Recovery of Cu(II) ions from ~87% to ~99%, depending on the type of 2-alkylimidazole. | 2021 [50] |
Ethylenodiamino-bis-acetylacetone/ 2-NPPE | Zn(II), Cr(III) and Ni(II)/ model solutions with the mixture of metals ion and tetramethylammonium hydroxide (pH = 7.8). | Effective separation of Zn(II) ions from aqueous solutions of Zn(II), Cr(III) and Ni(II) ions. The recovery factors of Zn(II), Cr(III) and Ni(II) were 90%, 65% and 6%, respectively. | 2020 [51] |
Ethylenediamine-bis-acetylacetone (EDAB-acac)/ 2-NPPE | Zn(II), Co(II), Ni(II) Cu(II) and Cd(II)/ model solutions with the mixture of metal ions and ammonia buffer (pH = 7.8). | Separation of Zn(II) from a mixture of nonferrous metal ions. The transport selectivities of the PIMs were Zn(II) > Cd(II) > Co(II) > Cu(II) > Ni(II). The recovery factors for Zn(II) ions were from 90% to 98%, depending on experimental conditions. | 2020 [52] |
1-hexylimidazole and 1-hexyl-2-methylimidazole/ 2-NPPE | Zn(II) and Ag(I)/ model solutions with the mixture of metal ions and tetra-methylammonium hydroxide (pH = 6.5), solutions after the leaching of a spent battery with a silver–zinc cell | Separation of Ag(I) and Zn(II) ions in the transport process from both model and real solutions. Two-step process enabling the efficient recovery of both metal ions. The recovery coefficients (leaching solution) of Ag(I) and Zn(II) for PIMs doped with 1-hexylimidazole were 86% and 90%, whereas for PIMs with 1-hexyl-2-methylimidazole were 47% and 94%, respectively. | 2020 [53] |
Meso-octamethyl-calix[4]pyrrole/ 2-NPOE | Hg(II)/ model solutions with the metal ions and hydrochloric acid and wastewater from the zinc smelter | PIM was stable, reusable and showed a good performance in selectively removing of mercury ions. The highest Hg(II) ion separation efficiency was ~92% for model solution and ~86% for zinc smelting wastewater. | 2022 [54] |
Calix[4]pyrrole/ 2-NPPE | Ag(I)/ model acidic solutions containing metal ions (pH = 4.0) | PIMs might be a promising approach for selective extraction of Ag(I) (extraction efficiency ~92%) from a mixed solution of Cu(II), Pb(II), Cd(II), Ni(II), Zn(II) and Co(II), e.g., from copper smelting wastewater. | 2020 [55] |
Cyanex 921/ 2-NPOE | As(V)/ synthetic aqueous leachates (sulfuric acid solutions) and real acid mine drainage (AMD) | Good performance of the PIM in the selective removal of arsenic, both from model solution (extraction efficiency ~96%) and AMD (extraction efficiency 90%). The membrane can be used repeatedly to separate arsenic ions. | 2020 [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowska, M.A. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review. Membranes 2022, 12, 1135. https://doi.org/10.3390/membranes12111135
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review. Membranes. 2022; 12(11):1135. https://doi.org/10.3390/membranes12111135
Chicago/Turabian StyleKaczorowska, Małgorzata A. 2022. "The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review" Membranes 12, no. 11: 1135. https://doi.org/10.3390/membranes12111135
APA StyleKaczorowska, M. A. (2022). The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review. Membranes, 12(11), 1135. https://doi.org/10.3390/membranes12111135