Oral Polio Vaccine Campaigns May Reduce the Risk of Death from Respiratory Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Exposure and Outcomes
2.3. Verbal Autopsies
2.4. Statistical Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, S.; Khalek, M.A.; Benn, C.S.; Aaby, P.; Hanifi, S.M.A. National immunisation campaigns with oral polio vaccine may reduce all-cause mortality: Analysis of 2004–2019 demographic surveillance data in rural Bangladesh. EClinicalMedicine 2021, 36, 100886. [Google Scholar] [CrossRef] [PubMed]
- Schoeps, A.; Nebié, E.; Fisker, A.B.; Sié, A.; Zakane, A.; Müller, O.; Aaby, P.; Becher, H. No effect of an additional early dose of measles vaccine on hospitalization or mortality in children: A randomized controlled trial. Vaccine 2018, 36, 1965–1971. [Google Scholar] [CrossRef]
- Welaga, P.; Oduro, A.; Debpuur, C.; Aaby, P.; Ravn, H.; Andersen, A.; Binka, F.; Hodgson, A. Fewer out-of-sequence vaccinations and reduction of child mortality in Northern Ghana. Vaccine 2017, 35, 2496–2503. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.; Fisker, A.B.; Rodrigues, A.; Martins, C.; Ravn, H.; Lund, N.; Biering-Sørensen, S.; Benn, C.S.; Aaby, P. National immunization campaigns with oral polio vaccine (OPV) reduce the general all-cause mortality rate: An analysis of the effect of campaign-OPV on child mortality within seven randomised trials. Front. Public Health 2018, 6, 13. [Google Scholar] [CrossRef]
- Andersen, A.; Fisker, A.B.; Nielsen, S.; Rodrigues, A.; Benn, C.S.; Aaby, P. National immunisation campaigns with oral polio vaccine may reduce all-cause mortality: An analysis of 13 years of demographic surveillance data from an urban African area. Clin. Infect. Dis. 2020, 36, ciaa1351. [Google Scholar] [CrossRef]
- Contreras, G. Sabin’s vaccine used for nonspecific prevention of infant diarrhea of viral etiology. Bull. Pan Am. Health Organ. 1974, 8, 123–132. [Google Scholar]
- Chumakov, M.P.; Voroshilova, M.K.; Antsupova, A.S.; Boĭko, V.M.; Blinova, M.I.; Priymyagi, L.S.; Rodin, V.I.; Seibil, V.B.; Sinyak, K.M.; Smorodintsev, A.; et al. Zhivye énterovirusnye vaktsiny dlia ékstrennoĭ nespetsificheskoĭ profilaktiki massovykh respiratornykh zabolevaniĭ vo vremia osenne-zimnikh épidemiĭ grippa i ostrykh respiratornykh zabolevaniĭ [Live enteroviral vaccines for the emergency nonspecific prevention of mass respiratory diseases during fall-winter epidemics of influenza and acute respiratory diseases]. J. Microbiol. Epidemiol. Immunobiol. 1992, 11–12, 37–40. (In Russian) [Google Scholar]
- Voroshilova, M.K. Potential use of nonpathogenic enteroviruses for control of human disease. Prog. Med. Virol. 1989, 36, 191–202. [Google Scholar] [PubMed]
- Seppälä, E.; Viskari, H.; Hoppu, S.; Honkanen, H.; Huhtala, H.; Simell, O.; Ilonen, J.; Knip, M.; Hyöty, H. Viral interference induced by live attenuated virus vaccine (OPV) can prevent otitis media. Vaccine 2011, 29, 8615–8618. [Google Scholar] [CrossRef]
- Upfill-Brown, A.; Taniuchi, M.; Platts-Mills, J.A.; Kirkpatrick, B.; Burgess, S.L.; Oberste, M.S.; Weldon, W.; Houpt, E.; Haque, R.; Zaman, K.; et al. Non-specific effects of oral polio vaccine on diarrheal burden and etiology among Bangladeshi children. Clin. Infect. Dis. 2017, 65, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.B.; Ifrim, D.C.; Saeed, S.; Jacobs, C.; van Loenhout, J.; de Jong, D.; Stunnenberg, H.G.; et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 17537–17542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumakov, K.; Avidan, M.S.; Benn, C.S.; Bertozzi, S.M.; Blatt, L.; Chnag, A.Y.; Jamison, D.T.; Khader, S.A.; Kottilil, S.; Netea, M.G.; et al. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101718118. [Google Scholar] [CrossRef] [PubMed]
- Byass, P.; Huong, D.L.; Minh, H.V. A probabilistic approach to interpreting verbal autopsies: Methodology and preliminary validation in Vietnam. Scand. J. Public Health. 2003, 62, 32–37. [Google Scholar] [CrossRef]
- Hanifi, S.M.; Mahmood, S.S.; Bhuiya, A. Cause-specific mortality and socioeconomic status in Chakaria, Bangladesh. Glob. Health Action 2014, 7, 25473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørup, S.; Stensballe, L.G.; Krause, T.G.; Aaby, P.; Benn, C.B.; Ravn, H. Oral polio vaccination and hospital admissions with non-polio infections in Denmark: Nationwide retrospective cohort study. Open Forum Infect. Dis. 2016, 3, ofv204. [Google Scholar] [CrossRef] [Green Version]
- Aaby, P.; Rodrigues, A.; Biai, S.; Martins, C.; Veirum, J.E.; Benn, C.S.; Jensen, H. Oral polio vaccination and low case fatality at the paediatric ward in Bissau, Guinea-Bissau. Vaccine 2004, 22, 3014–3017. [Google Scholar] [CrossRef]
- Biering-Sørensen, S.; Aaby, P.; Lund, N.; Monteiro, I.; Jensen, K.; Eriksen, H.B.; Schaltz-Buchholzer, F.; Jørgensen, A.S.P.; Rodrigues, A.; Fisker, A.B.; et al. Early BCG and neonatal mortality among low-birth-weight infants: A randomised controlled trial. Clin. Infect. Dis. 2017, 65, 1183–1190. [Google Scholar] [CrossRef]
- Schaltz-Buchholzer, F.; Biering-Sørensen, S.; Lund, N.; Monteiro, I.; Umbasse, P.; Fisker, A.B.; Andersen, A.; Rodrigues, A.; Aaby, P.; Benn, C.S. Early Bacille Calmette-Guérin vaccination, hospitalizations and hospital deaths: Analysis of a secondary outcome in three randomized trials from Guinea-Bissau. J. Infect. Dis. 2019, 219, 624–632. [Google Scholar] [CrossRef]
- Prentice, S.; Nassang, B.; Webb, E.L.; Akello, F.; Kiwudhu, F.; Akurut, H.; Elliott, A.M.; Arts, R.J.W.; Netea, M.G.; Dockrell, H.M.; et al. BCG-induced non-specific protection against heterologous infectious disease in Ugandan neonates: An investigator-blind randomised controlled trial. Lancet Infect. Dis. 2021, 21, 993–1003. [Google Scholar] [CrossRef]
- Martins, C.L.; Benn, C.S.; Andersen, A.; Balé, C.; Schaltz-Buchholzer, F.; Do, V.A.; Rodrigues, A.; Aaby, P.; Ravn, H.; Whittle, H.; et al. A randomized trial of a standard dose of Èdmonston-Zagreb measles vaccine given at 4.5 months of age: Effect on total hospital admissions. J. Infect. Dis. 2014, 209, 1731–1738. [Google Scholar] [CrossRef] [Green Version]
Respiratory Infections | ||||
---|---|---|---|---|
Campaign | After-Campaign Mortality Rates per 100 Years (Deaths/Person Years) | Before-Campaign Mortality Rates per 100 Years (Deaths/Person Years) | HR (After-/Before-Campaign) (95% CI) 1 | Main Model HR (After-/Before- Campaign) (95% CI) 2 |
Campaign-OPV-only | 0.12 (15/12,520) | 0.42 (119/28,233) | 0.48 (0.26–0.91) * | 0.38 (0.18–0.80) * |
Campaign-OPV + VAS | 0.14 (7/5043) | 0.36 (127/35,711) | 0.71 (0.33–1.55) | 1.28 (0.58–2.81) |
Campaign-OPV + MV | 0.13 (6/4771) | 0.36 (128/35,983) | 1.73 (0.50–5.97) | 2.70 (0.66–11.0) |
Campaign-VAS-only | 0.14 (32/22,968) | 0.57 (102/17,785) | 1.14 (0.64–2.04) | 1.04 (0.55–1.95) |
Campaign-MV-only | 0.06 (3/4830) | 0.36 (131/35,923) | 0.92 (0.21–3.94) | 0.87 (0.19–4.05) |
Other causes | ||||
Campaign | After-campaign mortality rates per 100 years (deaths/person years) | Before-campaign mortality rates per 100 years (deaths/person years) | HR (After/Before-campaign) (95% CI) 1 | Main model HR (After/Before- campaign) (95% CI) 2 |
Campaign-OPV-only | 0.19 (24/12,520) | 0.28 (79/28,233) | 0.95 (0.49–1.84) | 1.19 (0.63–2.27) |
Campaign-OPV + VAS | 0.18 (9/5043) | 0.26 (94/35,711) | 0.64 (0.31–1.33) | 0.61 (0.26–1.42) |
Campaign-OPV + MV | 0.13 (6/4771) | 0.27 (97/35,983) | 0.86 (0.26–2.80) | 0.71 (0.21–2.43) |
Campaign-VAS-only | 0.18 (42/22,968) | 0.34 (61/17,785) | 1.45 (0.78–2.68) | 1.30 (0.68–2.49) |
Campaign-MV-only | 0.12 (6/4830) | 0.27 (97/35,923) | 1.60 (0.63–4.08) | 1.51 (0.56–4.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, S.; Sujan, H.M.; Benn, C.S.; Aaby, P.; Hanifi, S.M.A. Oral Polio Vaccine Campaigns May Reduce the Risk of Death from Respiratory Infections. Vaccines 2021, 9, 1133. https://doi.org/10.3390/vaccines9101133
Nielsen S, Sujan HM, Benn CS, Aaby P, Hanifi SMA. Oral Polio Vaccine Campaigns May Reduce the Risk of Death from Respiratory Infections. Vaccines. 2021; 9(10):1133. https://doi.org/10.3390/vaccines9101133
Chicago/Turabian StyleNielsen, Sebastian, Hasan Mahmud Sujan, Christine Stabell Benn, Peter Aaby, and Syed Manzoor Ahmed Hanifi. 2021. "Oral Polio Vaccine Campaigns May Reduce the Risk of Death from Respiratory Infections" Vaccines 9, no. 10: 1133. https://doi.org/10.3390/vaccines9101133
APA StyleNielsen, S., Sujan, H. M., Benn, C. S., Aaby, P., & Hanifi, S. M. A. (2021). Oral Polio Vaccine Campaigns May Reduce the Risk of Death from Respiratory Infections. Vaccines, 9(10), 1133. https://doi.org/10.3390/vaccines9101133