COVID-19 Vaccination Reduces Lower Limb Amputation Rates and Mortality Rate in Patients with Pre-Existing Peripheral Vascular Disease Based on TriNetX Database
Abstract
1. Introduction
2. Methods
2.1. Data Source
2.2. Study Population
2.3. COVID-19 Vaccine Group
2.4. Unvaccinated Group
2.5. Outcomes
2.6. Additional Variables
2.7. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, P.J.; Chen, C.H.; Wong, C.S.; Chen, T.T.; Wu, M.Y.; Sung, L.C. Influenza vaccination reduces incidence of peripheral arterial occlusive disease in elderly patients with chronic kidney disease. Sci. Rep. 2021, 11, 4847. [Google Scholar] [CrossRef]
- Hur, D.J.; Kizilgul, M.; Aung, W.W.; Roussillon, K.C.; Keeley, E.C. Frequency of coronary artery disease in patients undergoing peripheral artery disease surgery. Am. J. Cardiol. 2012, 110, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Lawall, H.; Huppert, P.; Espinola-Klein, C.; Ruemenapf, G. The diagnosis and treatment of peripheral arterial vascular disease. Dtsch. Arztebl. Int. 2016, 113, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Binko, M.A.; Agrawal, N.; Kulkarni, R.N.; Andraska, E.A.; Sachdev, U.; Chaer, R.A.; Eslami, M.H.; Makaroun, M.S.; Sridharan, N. COVID-associated acute limb ischemia during the Delta surge and the effect of vaccines. J. Vasc. Surg. 2023, 77, 1165–1173. [Google Scholar] [CrossRef]
- Bellosta, R.; Luzzani, L.; Natalini, G.; Pegorer, M.A.; Attisani, L.; Cossu, L.G.; Ferrandina, C.; Fossati, A.; Conti, E.; Bush, R.L.; et al. Acute limb ischemia in patients with COVID-19 pneumonia. J. Vasc. Surg. 2020, 72, 1864–1872. [Google Scholar] [CrossRef]
- Fournier, M.; Faille, D.; Dossier, A.; Mageau, A.; Roland, P.N.; Ajzenberg, N.; Borie, R.; Bouadma, L.; Bunel, V.; Castier, Y.; et al. Arterial thrombotic events in adult inpatients with COVID-19. Mayo. Clin. Proc. 2021, 96, 295–303. [Google Scholar] [CrossRef]
- Bilaloglu, S.; Aphinyanaphongs, Y.; Jones, S.; Iturrate, E.; Hochman, J.; Berger, J.S. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA 2020, 324, 799–801. [Google Scholar] [CrossRef]
- Indes, J.E.; Koleilat, I.; Hatch, A.N.; Choinski, K.; Jones, D.B.; Aldailami, H.; Billett, H.; Denesopolis, J.M.; Lipsitz, E. Early experience with arterial thromboembolic complications in patients with COVID-19. J. Vasc. Surg. 2021, 73, 381–389. [Google Scholar] [CrossRef]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038–3044. [Google Scholar] [CrossRef]
- Silingardi, R.; Gennai, S.; Migliari, M.; Covic, T.; Leone, N. Acute limb ischemia in COVID-19 patients: Could aortic floating thrombus be the source of embolic complications? J. Vasc. Surg. 2020, 72, 1152–1153. [Google Scholar] [CrossRef]
- Gomez-Arbelaez, D.; Ibarra-Sanchez, G.; Garcia-Gutierrez, A.; Comanges-Yeboles, A. COVID-19-related aortic thrombosis: A report of four cases. Ann. Vasc. Surg. 2020, 67, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.B.; Alcalde, J.D.C.; Isidro, R.R.; Luna, C.Z.; Cubas, W.S.; Charres, A.C.; Gutiérrez, J.E.; Ochoa, J.D.; Arias, P.F. Acute limb ischemia in a Peruvian cohort infected by COVID-19. Ann. Vasc. Surg. 2021, 72, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Goldman, I.A.; Ye, K.; Scheinfeld, M.H. Lower-extremity arterial thrombosis associated with COVID-19 is characterized by greater thrombus burden and increased rate of amputation and death. Radiology 2020, 297, E263–E269. [Google Scholar] [CrossRef] [PubMed]
- Cantador, E.; Núñez, A.; Sobrino, P.; Espejo, V.; Fabia, L.; Vela, L.; de Benito, L.; Botas, J. Incidence and consequences of systemic arterial thrombotic events in COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fajardo, J.A.; Ansuategui, M.; Romero, C.; Comanges, A.; Gomez-Arbelaez, D.; Ibarra, G.; Garcia-Gutierrez, A. Mortality of COVID-19 patients with vascular thrombotic complications. Med. Clin. 2021, 156, 112–117. [Google Scholar] [CrossRef]
- Ilonzo, N.; Rao, A.; Safir, S.; Vouyouka, A.; Phair, J.; Baldwin, M.; Ting, W.; Soundararajan, K.; Han, D.; Tadros, R. Acute thrombotic manifestations of coronavirus disease 2019 infection: Experience at a large New York City health care system. J. Vasc. Surg. 2021, 73, 789–796. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Vahia, I.V.; Jeste, D.V.; Reynolds, C.F., III. Older adults and the mental health effects of COVID-19. JAMA 2020, 324, 2253–2254. [Google Scholar] [CrossRef]
- Etkin, Y.; Conway, A.M.; Silpe, J.; Qato, K.; Carroccio, A.; Manvar-Singh, P.; Giangola, G.; Deitch, J.S.; Davila-Santini, L.; Schor, J.A.; et al. Acute arterial thromboembolism in patients with COVID-19 in the New York City area. Ann. Vasc. Surg. 2021, 70, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; Van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- Germe, S.A.; Ozsoy, Z.; Bulat, B.; Durhan, G.; Fırlatan, B.; Kilic, L.; Akdogan, A. Computed tomography imaging-based radiologic evaluation of pulmonary artery thrombosis in a series of patients with Behcet’s disease. Int. J. Rheum. Dis. 2024, 27, e15267. [Google Scholar] [CrossRef]
- Mosavat, A.; Mirhosseini, A.; Shariati, A.; Mohareri, M.; Valizadeh, N.; Mohammadi, F.S.; Shamsian, S.A.A.; Rad, M.J.; Rezaee, S.A. SARS-CoV-2 infection and increasing autoimmune disorders among ICU-hospitalized COVID-19 Patients. Int. J. Rheum. Dis. 2023, 26, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Mohammed, M.; Berdasco, C.; Lazartigues, E. Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clin. Sci. 2020, 134, 2535–2547. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.Y.; Wang, S.I.; Wei, J.C.C. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated populations: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine 2022, 53, 101619. [Google Scholar] [CrossRef]
- Lu, Y.; Matuska, K.; Nadimpalli, G.; Ma, Y.; Duma, N.; Zhang, H.T.; Chiang, Y.; Lyu, H.; Chillarige, Y.; Kelman, J.A.; et al. Stroke risk after COVID-19 bivalent vaccination among US older adults. JAMA 2024, 331, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Attisani, L.; Pucci, A.; Luoni, G.; Luzzani, L.; Pegorer, M.A.; Settembrini, A.M.; Bissacco, D.; Wohlauer, M.V.; Piffaretti, G.; Bellosta, R. COVID-19 and acute limb ischemia: A systematic review. J. Cardiovasc. Surg. 2021, 62, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Ueki, Y.; Bär, S.; Losdat, S.; Otsuka, T.; Zanchin, C.; Zanchin, T.; Gragnano, F.; Gargiulo, G.; Siontis, G.C.M.; Praz, F.; et al. Validation of the Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores. EuroIntervention 2020, 16, 371–379. [Google Scholar] [CrossRef]
- Walton, B.L.; Lehmann, M.; Skorczewski, T.; Holle, L.A.; Beckman, J.D.; Cribb, J.A.; Mooberry, M.J.; Wufsus, A.R.; Cooley, B.C.; Homeister, J.W.; et al. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 2017, 129, 2537–2546. [Google Scholar] [CrossRef] [PubMed]
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
With Vaccine | Without Vaccine | SMD | With Vaccine | Without Vaccine | SMD | |
N | 11,956 | 40,324 | 11,822 | 11,822 | ||
Age at index date | 66.5 ± 14.1 | 65.7 ± 14.9 | 0.0554 | 66.5 ± 14.1 | 66.4 ± 14.3 | 0.0039 |
Sex | ||||||
Female | 6652 (55.6%) | 21,284 (52.8%) | 0.0573 | 6569 (55.6%) | 6608 (55.9%) | 0.0066 |
Male | 4900 (41.0%) | 15,813 (39.2%) | 0.0361 | 4849 (41.0%) | 4813 (40.7%) | 0.0062 |
Ethnicity | ||||||
Not Hispanic or Latino | 10,448 (87.4%) | 30,345 (75.3%) | 0.3152 | 10,321 (87.3%) | 10,338 (87.4%) | 0.0043 |
Hispanic or Latino | 832 (7.0%) | 2368 (5.9%) | 0.0443 | 825 (7.0%) | 821 (6.9%) | 0.0013 |
Race | ||||||
White | 9360 (78.3%) | 29,012 (71.9%) | 0.1470 | 9252 (78.3%) | 9261 (78.3%) | 0.0018 |
Black or African American | 1374 (11.5%) | 4708 (11.7%) | 0.0057 | 1370 (11.6%) | 1372 (11.6%) | 0.0005 |
Asian | 299 (2.5%) | 527 (1.3%) | 0.0874 | 280 (2.4%) | 291 (2.5%) | 0.0061 |
Socioeconomic and psychosocial circumstances | 2068 (17.3%) | 4040 (10.0%) | 0.2131 | 2005 (17.0%) | 2012 (17.0%) | 0.0016 |
BMI | ||||||
<30.0 | 5946 (49.7%) | 16,350 (40.5%) | 0.1854 | 5839 (49.4%) | 5926 (50.1%) | 0.0147 |
30.0–34.9 | 2891 (24.2%) | 8244 (20.4%) | 0.0898 | 2850 (24.1%) | 2800 (23.7%) | 0.0099 |
≥35.0 | 2536 (21.2%) | 7276 (18.0%) | 0.0798 | 2503 (21.2%) | 2488 (21.0%) | 0.0031 |
Lifestyle | ||||||
Nicotine dependence | 3269 (27.3%) | 5213 (12.9%) | 0.3654 | 3139 (26.6%) | 3115 (26.3%) | 0.0046 |
Alcohol-related disorders | 716 (6.0%) | 1581 (3.9%) | 0.0954 | 690 (5.8%) | 689 (5.8%) | 0.0004 |
Baseline medical utilization | ||||||
Preventive medicine services | 1094 (9.2%) | 2359 (5.9%) | 0.1255 | 1055 (8.9%) | 1022 (8.6%) | 0.0099 |
Emergency department services | 3666 (30.7%) | 13,376 (33.2%) | 0.0538 | 3644 (30.8%) | 3597 (30.4%) | 0.0086 |
Inpatient encounter | 3425 (28.6%) | 11,459 (28.4%) | 0.0051 | 3402 (28.8%) | 3353 (28.4%) | 0.0092 |
Baseline comorbidity | ||||||
Hypertensive diseases | 8672 (72.5%) | 26,705 (66.2%) | 0.1371 | 8555 (72.4%) | 8576 (72.5%) | 0.0040 |
Disorders of lipoprotein metabolism | 7247 (60.6%) | 21,973 (54.5%) | 0.1241 | 7140 (60.4%) | 7121 (60.2%) | 0.0033 |
Diabetes mellitus | 5143 (43.0%) | 15,269 (37.9%) | 0.1051 | 5065 (42.8%) | 5015 (42.4%) | 0.0086 |
T2DM with circulatory complications | 1318 (11.0%) | 4091 (10.1%) | 0.0286 | 1302 (11.0%) | 1255 (10.6%) | 0.0128 |
T1DM with circulatory complications | 31 (0.3%) | 162 (0.4%) | 0.0248 | 31 (0.3%) | 33 (0.3%) | 0.0033 |
Chronic lower respiratory diseases | 4236 (35.4%) | 12,529 (31.1%) | 0.0926 | 4156 (35.2%) | 4113 (34.8%) | 0.0076 |
Ischemic heart diseases | 4806 (40.2%) | 14,830 (36.8%) | 0.0703 | 4735 (40.1%) | 4735 (40.1%) | 0.0000 |
Heart failure | 3108 (26.0%) | 9321 (23.1%) | 0.0670 | 3059 (25.9%) | 2978 (25.2%) | 0.0157 |
Cerebrovascular diseases | 2712 (22.7%) | 7611 (18.9%) | 0.0940 | 2667 (22.6%) | 2611 (22.1%) | 0.0114 |
Chronic kidney disease (CKD) | 3389 (28.3%) | 10,433 (25.9%) | 0.0556 | 3346 (28.3%) | 3323 (28.1%) | 0.0043 |
Diseases of liver | 1775 (14.8%) | 4037 (10.0%) | 0.1469 | 1727 (14.6%) | 1656 (14.0%) | 0.0172 |
Osteoporosis without current pathological fracture | 1449 (12.1%) | 3238 (8.0%) | 0.1362 | 1389 (11.7%) | 1357 (11.5%) | 0.0084 |
Osteoporosis with current pathological fracture | 121 (1.0%) | 271 (0.7%) | 0.0372 | 114 (1.0%) | 111 (0.9%) | 0.0026 |
Rheumatoid arthritis with rheumatoid factor | 258 (2.2%) | 508 (1.3%) | 0.0693 | 241 (2.0%) | 242 (2.0%) | 0.0006 |
Other rheumatoid arthritis | 644 (5.4%) | 1555 (3.9%) | 0.0729 | 619 (5.2%) | 614 (5.2%) | 0.0019 |
Non-pressure chronic ulcer of lower limb | 474 (4.0%) | 1595 (4.0%) | 0.0005 | 470 (4.0%) | 461 (3.9%) | 0.0039 |
Gangrene | 191 (1.6%) | 361 (0.9%) | 0.0633 | 174 (1.5%) | 174 (1.5%) | 0.0000 |
Cumulative Probability (95% CI) of Study Outcomes | |||||
---|---|---|---|---|---|
Event | 1-Year | 2-Year | 3-Year | Hazard Ratio (95% CI) | |
Risk of all-cause mortality | |||||
Vaccinated (n = 11,822) | 1363 | 6.9% (6.5–7.4%) | 10.9% (10.4–11.5%) | 15.3% (14.4–16.2%) | 0.857 (0.796–0.922) |
Unvaccinated (n = 11,822) | 1494 | 8.8% (8.2–9.3%) | 12.7% (12.1–13.4%) | 16.3% (15.5–17.1%) | Reference |
Risk of lower limb amputation | |||||
Vaccinated (n = 11,822) | 174 | 0.9% (0.7–1.1%) | 1.5% (1.3–1.8%) | 1.9% (1.6–2.2%) | 0.716 (0.587–0.873) |
Unvaccinated (n = 11,822) | 226 | 1.5% (1.2–1.7%) | 2.1% (1.8–2.4%) | 2.6% (2.3–3.0%) | Reference |
Risk of ischemic stroke | |||||
Vaccinated (n = 11,822) | 2056 | 15.0% (14.3–15.6%) | 17.9% (17.2–18.6%) | 19.8% (19.0–20.7%) | 0.958 (0.902–1.019) |
Unvaccinated (n = 11,822) | 2041 | 15.1% (14.4–15.8%) | 18.9% (18.1–19.6%) | 21.4% (20.5–22.3%) | Reference |
Author | COVID-19 Patient | ALI Patient | Age | Sex (Male%) | Study Population | Mortality Rate (%) | Amputation Rate (%) |
---|---|---|---|---|---|---|---|
Juan Bautista S_anchez et al., 2021 [13] | 30 | 60 | 76.6% | Six hospitals in Peruvian | 23.3% | 30% | |
Bellosta et al., 2020 [6] | 20 | 75 | 90% | Italian | 40% | ||
Seda Bilaloglu et al., 2020 [8] | 3334 | 365 | 64 | 60.4% | 4 hospitals in New York City | 24.5% | |
Goldman et al., 2020 [14] | 16 | 15 | 70 | 56% | Montefiore Medical Center | 38% | 25% |
Estefania Cantador et al., 2020 [15] | 14 | 3 | 73 | 78.6% | Spain | 28.6% | |
Jose A. Gonzalez-Fajardoa et al., 2020 [16] | 2943 | 106 | 65 | 67.92% | Spain | 23.6% | |
Ilonzo et al., 2021 [17] | 21 | 64.6 | 52.4% | New York | 33.3% | ||
Jeffrey E. Indes et al., 2021 [9] | 424 | 15 | 64 | 66.7% | New York City | 40% | |
Yana Etkin., et al., 2021 [20] | 12,630 | 49 | 67 | 76% | United States | 43% | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.-T.; Huang, Y.-H.; Huang, J.-Y.; Wei, J.C.-C. COVID-19 Vaccination Reduces Lower Limb Amputation Rates and Mortality Rate in Patients with Pre-Existing Peripheral Vascular Disease Based on TriNetX Database. Vaccines 2025, 13, 969. https://doi.org/10.3390/vaccines13090969
Su S-T, Huang Y-H, Huang J-Y, Wei JC-C. COVID-19 Vaccination Reduces Lower Limb Amputation Rates and Mortality Rate in Patients with Pre-Existing Peripheral Vascular Disease Based on TriNetX Database. Vaccines. 2025; 13(9):969. https://doi.org/10.3390/vaccines13090969
Chicago/Turabian StyleSu, Shiuan-Tzuen, Yu-Hsuan Huang, Jing-Yang Huang, and James C.-C. Wei. 2025. "COVID-19 Vaccination Reduces Lower Limb Amputation Rates and Mortality Rate in Patients with Pre-Existing Peripheral Vascular Disease Based on TriNetX Database" Vaccines 13, no. 9: 969. https://doi.org/10.3390/vaccines13090969
APA StyleSu, S.-T., Huang, Y.-H., Huang, J.-Y., & Wei, J. C.-C. (2025). COVID-19 Vaccination Reduces Lower Limb Amputation Rates and Mortality Rate in Patients with Pre-Existing Peripheral Vascular Disease Based on TriNetX Database. Vaccines, 13(9), 969. https://doi.org/10.3390/vaccines13090969