Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine Versus a 13-Valent Vaccine in Infants: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Databases and Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Outcome Definition
2.4. Risk of Bias Assessment
2.5. Certainty of Evidence
2.6. Data Synthesis and Statistical Analysis
3. Results
3.1. Systematic Review
3.2. Results of Risk of Bias
3.3. Meta-Analysis
4. Discussion
4.1. Implications for Practice and Policy
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
| DP | Difference (PCV20-PCV13) in the percentage of participants who achieved predefined antibody levels for each serotype |
| GMR | Geometric means ratio (PCV20/PCV13) of serotype-specific pneumococcal anti-capsular pneumococcal antibodies. |
| GMTs of OPA | Geometric mean titres of serotype-specific opsonophagocytic activity |
| IgG | Immunoglobulin G |
| IPD | Invasive pneumococcal disease |
| MeSH | Medical Subject Headings |
| PCV | Pneumococcal conjugate vaccine |
| PCV20 | 20-valent pneumococcal conjugate vaccine |
| PCV13 | 13-valent pneumococcal conjugate vaccine |
| PD | Pneumococcal disease |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RCT | Randomized controlled trials |
| S. | Streptococcus |
| WHO | World Health Organization |
References
- Bogaert, D.; de Groot, R.; Hermans, P. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef]
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef]
- Pneumococcal Conjugate Vaccines in Infants and Children Under 5 Years of Age: WHO Position Paper—February 2019. Available online: https://iris.who.int/handle/10665/310970 (accessed on 17 September 2024).
- Narciso, A.R.; Dookie, R.; Nannapaneni, P.; Normark, S.; Henriques-Normark, B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat. Rev. Microbiol. 2024, 23, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Said, M.A.; Johnson, H.L.; Nonyane, B.A.S.; Deloria-Knoll, M.; O’Brien, K.L.; Andreo, F.; Beovic, B.; Blanco, S.; Boersma, W.G.; Boulware, D.R.; et al. Estimating the burden of pneumococcal pneumonia among adults: A systematic review and meta-analysis of diagnostic techniques. PLoS ONE 2013, 8, e60273. [Google Scholar] [CrossRef]
- Troeger, C.; Blacker, B.; Khalil, I.A.; Rao, P.C.; Cao, J.; Zimsen, S.R.M.; Albertson, S.B.; Deshpande, A.; Farag, T.; Abebe, Z.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef]
- Bender, R.G.; Sirota, S.B.; Swetschinski, L.R.; Dominguez, R.-M.V.; Novotney, A.; Wool, E.E.; Ikuta, K.S.; Vongpradith, A.; Rogowski, E.L.B.; Doxey, M.; et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef]
- Wahl, B.; O’Brien, K.L.; Greenbaum, A.; Majumder, A.; Liu, L.; Chu, Y.; Lukšić, I.; Nair, H.; McAllister, D.A.; Campbell, H.; et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000–15. Lancet Glob. Health 2018, 6, e744–e757. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Recommendations to Assure the Quality, Safety and Efficacy of Pneumococcal Conjugate Vaccines, Annex 3, TRS No 977. Available online: https://www.who.int/publications/m/item/pneumococcal-conjugate-vaccines-annex3-trs-977 (accessed on 25 September 2024).
- Pilishvili, T.; Lexau, C.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Reingold, A.; Thomas, A.; Schaffner, W.; Craig, A.S.; et al. Sustained Reductions in Invasive Pneumococcal Disease in the Era of Conjugate Vaccine. J. Infect. Dis. 2010, 201, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Pilishvili, T.; Bennett, N.M. Pneumococcal Disease Prevention Among Adults Strategies for the Use of Pneumococcal Vaccines. Am. J. Prev. Med. 2015, 49, S383–S390. [Google Scholar] [CrossRef]
- Muñoz-Almagro, C.; Ciruela, P.; Esteva, C.; Marco, F.; Navarro, M.; Bartolome, R.; Sauca, G.; Gallés, C.; Morta, M.; Ballester, F.; et al. Serotypes and clones causing invasive pneumococcal disease before the use of new conjugate vaccines in Catalonia, Spain. J. Infect. 2011, 63, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, E.H.; Lee, H.J. Efficacy and effectiveness of extended-valency pneumococcal conjugate vaccines. Korean J. Pediatr. 2014, 57, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Shiri, T.; Datta, S.; Madan, J.; Tsertsvadze, A.; Royle, P.; Keeling, M.J.; McCarthy, N.D.; Petrou, S. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e51–e59. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, M.; Chapman, R.; Lapidot, R.; Sutton, K.; Dillon-Murphy, D.; Patel, S.; Chilson, E.; Snow, V.; Farkouh, R.; Pelton, S. Twenty-Year Public Health Impact of 7- and 13-Valent Pneumococcal Conjugate Vaccines in US Children. Emerg. Infect. Dis. 2021, 27, 1627–1636. [Google Scholar] [CrossRef]
- Savulescu, C.; Krizova, P.; Valentiner-Branth, P.; Ladhani, S.; Rinta-Kokko, H.; Levy, C.; Mereckiene, J.; Knol, M.; Winje, B.A.; Ciruela, P.; et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine 2022, 40, 3963–3974. [Google Scholar] [CrossRef]
- Tsaban, G.; Ben-Shimol, S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: A systematic review of the literature. Vaccine 2017, 35, 2882–2891. [Google Scholar] [CrossRef]
- Ladhani, S.N.; Collins, S.; Djennad, A.; Sheppard, C.L.; Borrow, R.; Fry, N.K.; Andrews, N.J.; Miller, E.; Ramsay, M.E. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–2017: A prospective national observational cohort study. Lancet Infect. Dis. 2018, 18, 441–451. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases. Available online: https://atlas.ecdc.europa.eu/public/index.aspx (accessed on 10 October 2024).
- WHO Publication. Pneumococcal Vaccines WHO Position Paper—2012—Recommendations. Vaccine 2012, 30, 4717–4718. [Google Scholar] [CrossRef]
- Cohen, R.; Levy, C.; Varon, E. The latest news in France before distribution of third-generation pneumococcal conjugate vaccines. Infect. Dis. Now. 2024, 54, 104937. [Google Scholar] [CrossRef]
- Song, J.Y.; Moseley, M.A.; Burton, R.L.; Nahm, M.H. Pneumococcal vaccine and opsonic pneumococcal antibody. J. Infect. Chemother. 2013, 19, 412–425. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Biological Standardization. World Health Organ. Tech. Rep. Ser. 2013, 979, 1–366. [Google Scholar]
- Huerta, J.L.; Ta, A.; Vinand, E.; Torres, G.I.; Wannaadisai, W.; Huang, L. PCV20 for the prevention of invasive pneumococcal disease in the Mexican pediatric population: A cost-effectiveness analysis. Hum. Vaccin. Immunother. 2025, 21, 2475594. [Google Scholar] [CrossRef]
- Perdrizet, J.; Ta, A.; Huang, L.; Wannaadisai, W.; Ilic, A.; Hayford, K.; Sabra, A. Delayed Transition to 20-Valent Pneumococcal Conjugate Vaccine in Pediatric National Immunization Programs: Forgone Public Health and Economic Benefit. Infect. Dis. Ther. 2025, 14, 501–525. [Google Scholar] [CrossRef]
- Čivljak, R.; Draženović, K.; Butić, I.; Kljaković Gašpić Batinjan, M.; Huljev, E.; Vicković, N.; Lizatović, I.K.; Grgić, B.; Budimir, A.; Janeš, A.; et al. Invasive pneumococcal disease in adults after the introduction of pneumococcal vaccination: A retrospective study in the metropolitan area of Zagreb, Croatia (2010–2022). Front. Public Health 2024, 12, 1480348. [Google Scholar] [CrossRef]
- Balsells, E.; Guillot, L.; Nair, H.; Kyaw, M.H. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0177113. [Google Scholar] [CrossRef]
- Pilishvili, T.; Gierke, R.; Farley, M.M.; Schaffner, W.; Thomas, A.; Reingold, A.; Harrison, L.; Holtzman, C.; Burzlaff, K.; Petit, S.; et al. 1470. Epidemiology of Invasive Pneumococcal Disease (IPD) Following 18 years of Pneumococcal Conjugate Vaccine (PCV) Use in the United States. Open Forum Infect. Dis. 2020, 7 (Suppl. 1), S736–S737. [Google Scholar] [CrossRef]
- Cohen, R.; Levy, C.; Ouldali, N.; Goldrey, M.; Béchet, S.; Bonacorsi, S.; Varon, E. Invasive Disease Potential of Pneumococcal Serotypes in Children After PCV13 Implementation. Clin. Infect. Dis. 2021, 72, 1453–1456. [Google Scholar] [CrossRef]
- Tomczyk, S.; Lynfield, R.; Schaffner, W.; Reingold, A.; Miller, L.; Petit, S.; Holtzman, C.; Zansky, S.M.; Thomas, A.; Baumbach, J.; et al. Prevention of Antibiotic-Nonsusceptible Invasive Pneumococcal Disease With the 13-Valent Pneumococcal Conjugate Vaccine. Clin. Infect. Dis. 2016, 62, 1119–1125. [Google Scholar] [CrossRef]
- Metcalf, B.J.; Gertz, R.E.; Gladstone, R.A.; Walker, H.; Sherwood, L.K.; Jackson, D.; Li, Z.; Law, C.; Hawkins, P.A.; Chochua, S.; et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin. Microbiol. Infect. 2016, 22, 60.e9–60.e29. [Google Scholar] [CrossRef]
- Harboe, Z.B.; Thomsen, R.W.; Riis, A.; Valentiner-Branth, P.; Christensen, J.J.; Lambertsen, L.; Krogfelt, K.A.; Konradsen, H.B.; Benfield, T.L. Pneumococcal Serotypes and Mortality following Invasive Pneumococcal Disease: A Population-Based Cohort Study. PLoS Med. 2009, 6, e1000081. [Google Scholar] [CrossRef]
- Korbal, P.; Wysocki, J.; Jackowska, T.; Kline, M.; Tamimi, N.; Drozd, J.; Lei, L.; Peng, Y.; Giardina, P.C.; Gruber, W.; et al. Phase 3 Safety and Immunogenicity Study of a Three-dose Series of Twenty-valent Pneumococcal Conjugate Vaccine in Healthy Infants and Toddlers. Pediatr. Infect. Dis. J. 2024, 43, 587–595. [Google Scholar] [CrossRef]
- Senders, S.; Klein, N.P.; Tamimi, N.; Thompson, A.; Baugher, G.; Trammel, J.; Peng, Y.; Giardina, P.; Scully, I.L.; Pride, M.; et al. A Phase Three Study of the Safety and Immunogenicity of a Four-dose Series of 20-Valent Pneumococcal Conjugate Vaccine in Healthy Infants. Pediatr. Infect. Dis. J. 2024, 43, 596–603. [Google Scholar] [CrossRef]
- Ishihara, Y.; Fukazawa, M.; Enomoto, S.; de Solom, R.; Yamaji, M.; Kline, M.; Aizawa, M.; Peng, Y.; Kogawara, O.; Giardina, P.C.; et al. A phase 3 randomized study to evaluate safety and immunogenicity of 20-valent pneumococcal conjugate vaccine in healthy Japanese infants. Int. J. Infect. Dis. 2024, 141, 106942. [Google Scholar] [CrossRef]
- Senders, S.; Klein, N.P.; Lamberth, E.; Thompson, A.; Drozd, J.; Trammel, J.; Peng, Y.; Giardina, P.C.; Jansen, K.U.; Gruber, W.C.; et al. Safety and Immunogenicity of a 20-valent Pneumococcal Conjugate Vaccine in Healthy Infants in the United States. Pediatr. Infect. Dis. J. 2021, 40, 944–951. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook (accessed on 6 March 2025).
- Home|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 6 March 2025).
- Tan, C.Y.; Immermann, F.W.; Sebastian, S.; Pride, M.W.; Pavliakova, D.; Belanger, K.A.; Watson, W.; Scott, D.A.; Sidhu, M.; Jansen, K.U.; et al. Evaluation of a Validated Luminex-Based Multiplex Immunoassay for Measuring Immunoglobulin G Antibodies in Serum to Pneumococcal Capsular Polysaccharides. mSphere 2018, 3, e00127-18. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef]
- Röver, C.; Knapp, G.; Friede, T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med. Res. Methodol. 2015, 15, 99. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. Surg. J. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 5 March 2025).
- Oligbu, G.; Collins, S.; Sheppard, C.L.; Fry, N.K.; Slack, M.; Borrow, R.; Ladhani, S.N. Childhood Deaths Attributable to Invasive Pneumococcal Disease in England and Wales, 2006–2014. Clin. Infect. Dis. 2017, 65, 308–314. [Google Scholar] [CrossRef]
- Cui, Y.A.; Patel, H.; O’Neil, W.M.; Li, S.; Saddier, P. Pneumococcal Serotype Distribution: A Snapshot of Recent Data in Pediatric and Adult Populations around the World. Hum. Vaccin. Immunother. 2017, 13, 1229–1241. [Google Scholar] [CrossRef]
- Hausdorff, W.P.; Hanage, W.P. Interim Results of an Ecological Experiment—Conjugate Vaccination against the Pneumococcus and Serotype Replacement. Hum. Vaccines Immunother. 2016, 12, 358–374. [Google Scholar] [CrossRef]
- Nakano, S.; Fujisawa, T.; Ito, Y.; Chang, B.; Matsumura, Y.; Yamamoto, M.; Suga, S.; Ohnishi, M.; Nagao, M. Nationwide Surveillance of Paediatric Invasive and Non-Invasive Pneumococcal Disease in Japan after the Introduction of the 13-Valent Conjugated Vaccine, 2015–2017. Vaccine 2020, 38, 1818–1824. [Google Scholar] [CrossRef]
- Thompson, A.; Gurtman, A.; Patterson, S.; Juergens, C.; Laudat, F.; Emini, E.A.; Gruber, W.C.; Scott, D.A. Safety of 13-valent pneumococcal conjugate vaccine in infants and children: Meta-analysis of 13 clinical trials in 9 countries. Vaccine 2013, 31, 5289–5295. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, H.; Wannaadisai, W.; Vietri, J.; Chaiyakunapruk, N. Systematic literature review of cost-effectiveness analyses of adult 15- and 20-valent pneumococcal vaccines. Vaccine 2025, 46, 126656. [Google Scholar] [CrossRef]
- Vo, N.X.; Pham, H.L.; Bui, U.M.; Ho, H.T.; Bui, T.T. Cost-Effectiveness of the Pneumococcal Vaccine in the Adult Population: A Systematic Review. Healthcare 2024, 12, 2490. [Google Scholar] [CrossRef]
- Vo, N.X.; Pham, H.L.; Bui, U.M.; Ho, H.T.; Bui, T.T. Cost-Effectiveness Analysis of Pneumococcal Vaccines in the Pediatric Population: A Systematic Review. Healthcare 2024, 12, 1950. [Google Scholar] [CrossRef]
- Farrar, J.L.; Childs, L.; Ouattara, M.; Akhter, F.; Britton, A.; Pilishvili, T.; Kobayashi, M. Systematic Review and Meta-Analysis of the Efficacy and Effectiveness of Pneumococcal Vaccines in Adults. Pathogens 2023, 12, 732. [Google Scholar] [CrossRef]
- Navarro-Torné, A.; Montuori, E.A.; Kossyvaki, V.; Méndez, C. Burden of pneumococcal disease among adults in Southern Europe (Spain, Portugal, Italy, and Greece): A systematic review and meta-analysis. Hum. Vaccines Immunother. 2021, 17, 3670–3686. [Google Scholar] [CrossRef]
- Nieto-Guevara, J.; Borys, D.; DeAntonio, R.; Guzman-Holst, A.; Hoet, B. Interchangeability between pneumococcal conjugate vaccines for pediatric use: A systematic literature review. Expert Rev. Vaccines 2020, 19, 1011–1022. [Google Scholar] [CrossRef]
- Mochdece, C.; Fontes, L.; Martins, C.; Moliterno, F.; Riera, R. Pneumococcal conjugate vaccines for preventing invasive pneumococcal disease and pneumonia in children aged up to five years. Cochrane Database Syst. Rev. 2020, 4, CD013580. [Google Scholar] [CrossRef]
- Garrido, H.M.G.; Schnyder, J.L.; Tanck, M.W.T.; Vollaard, A.; Spijker, R.; Grobusch, M.P.; Goorhuis, A. Immunogenicity of pneumococcal vaccination in HIV infected individuals: A systematic review and meta-analysis. eClinicalMedicine 2020, 29, 100576. [Google Scholar] [CrossRef]
- McGirr, A.; Iqbal, S.M.; Izurieta, P.; Talarico, C.; Luijken, J.; Redig, J.; Newson, R.S. A systematic literature review and network meta-analysis feasibility study to assess the comparative efficacy and comparative effectiveness of pneumococcal conjugate vaccines. Human. Vaccines Immunother. 2019, 15, 2713–2724. [Google Scholar] [CrossRef]
- Walters, J.; Tang, J.; Poole, P.; Wood-Baker, R. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017, 1, CD001390. [Google Scholar] [CrossRef]
- Fortanier, A.C.; Venekamp, R.P.; Boonacker, C.W.; Hak, E.; Schilder, A.G.; Sanders, E.A.; Damoiseaux, R.A. Pneumococcal conjugate vaccines for preventing acute otitis media in children. Cochrane Database Syst. Rev. 2019, 5, CD001480. [Google Scholar] [CrossRef]
- Oligbu, G.; Hsia, Y.; Folgori, L.; Collins, S.; Ladhani, S. Pneumococcal conjugate vaccine failure in children: A systematic review of the literature. Vaccine 2016, 34, 6126–6132. [Google Scholar] [CrossRef]
- Ciapponi, A.; Lee, A.; Bardach, A.; Glujovsky, D.; Rey-Ares, L.; Luisa Cafferata, M.; Valanzasca, P.; García Martí, S. Interchangeability between Pneumococcal Conjugate Vaccines: A Systematic Review and Meta-Analysis. Value Health Reg. Issues 2016, 11, 24–34. [Google Scholar] [CrossRef]
- Fleming-Dutra, K.E.; Conklin, L.; Loo, J.D.; Knoll, M.D.; Park, D.E.; Kirk, J.; Goldblatt, D.; Whitney, C.G.; O’Brien, K.L. Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Vaccine-type Nasopharyngeal Carriage. Pediatr. Infect. Dis. J. 2014, 33, S152–S160. [Google Scholar] [CrossRef]
- Vadlamudi, N.K.; Chen, A.; Marra, F. Impact of the 13-valent pneumococcal conjugate vaccine among adults: A systematic review and meta-analysis. Clin. Infect. Dis. 2019, 69, 34–49. [Google Scholar] [CrossRef]
- Vadlamudi, N.K.; Parhar, K.; Altre-Malana, K.L.; Kang, A.; Marra, F. Immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine compared to 23-valent pneumococcal polysaccharide in immunocompetent adults: A systematic review and meta-analysis. Vaccine 2019, 37, 1021–1029. [Google Scholar] [CrossRef]
- Wagner, G.; Gartlehner, G.; Thaler, K.; Ledinger, D.; Feyertag, J.; Klerings, I.; Saif-Ur-Rahman, K.; Devane, D.; Olsson, K.; Adel Ali, K.; et al. Immunogenicity and safety of the 15-valent pneumococcal conjugate vaccine, a systematic review and meta-analysis. npj Vaccines 2024, 9, 257. [Google Scholar] [CrossRef]
- Feng, S.; McLellan, J.; Pidduck, N.; Roberts, N.; Higgins, J.P.T.; Choi, Y.; Izu, A.; Jit, M.; Madhi, S.A.; Mulholland, K.; et al. Immunogenicity and seroefficacy of 10-valent and 13-valent pneumococcal conjugate vaccines: A systematic review and network meta-analysis of individual participant data. eClinicalMedicine 2023, 61, 102073. [Google Scholar] [CrossRef]
- Ruiz-Aragón, J.; Márquez-Peláez, S.; Molina-Linde, J.M.; Grande-Tejada, A.M. Safety and immunogenicity of 13-valent pneumococcal conjugate vaccine in infants: A meta-analysis. Vaccine 2013, 31, 5349–5358. [Google Scholar] [CrossRef]
- Duan, K.; Guo, J.; Lei, P. Safety and Immunogenicity of Pneumococcal Conjugate Vaccine in Preterm Infants: A Meta-Analysis. Indian. J. Pediatr. 2017, 84, 101–110. [Google Scholar] [CrossRef]
- Ngamprasertchai, T.; Ruenroengbun, N.; Kajeekul, R. Immunogenicity and Safety of the Higher-Valent Pneumococcal Conjugate Vaccine vs the 13-Valent Pneumococcal Conjugate Vaccine in Older Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2025, 12, ofaf069. [Google Scholar] [CrossRef]
- Rückinger, S.; Dagan, R.; Albers, L.; Schönberger, K.; von Kries, R. Immunogenicity of pneumococcal conjugate vaccines in infants after two or three primary vaccinations: A systematic review and meta-analysis. Vaccine 2011, 29, 9600–9606. [Google Scholar] [CrossRef]
- Jódar, L.; Butler, J.; Carlone, G.; Dagan, R.; Goldblatt, D.; Käyhty, H.; Klugman, K.; Plikaytis, B.; Siber, G.; Kohberger, R.; et al. Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 2003, 21, 3265–3272. [Google Scholar] [CrossRef]
- De Wals, P. PCV13, PCV15 or PCV20: Which vaccine is best for children in terms of immunogenicity? Can. Commun. Dis. Rep. 2024, 50, 35–39. [Google Scholar] [CrossRef]
- Andrews, N.J.; Waight, P.A.; Burbidge, P.; Pearce, E.; Roalfe, L.; Zancolli, M.; Slack, M.; Ladhani, S.N.; Miller, E.; Goldblatt, D. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: A postlicensure indirect cohort study. Lancet Infect. Dis. 2014, 14, 839–846. [Google Scholar] [CrossRef]
- Richter, L.; Schmid, D.; Kanitz, E.E.; Zwazl, I.; Pöllabauer, E.; Jasinska, J.; Burgmann, H.; Kundi, M.; Wiedermann, U. Invasive pneumococcal diseases in children and adults before and after introduction of the 10-valent pneumococcal conjugate vaccine into the Austrian national immunization program. PLoS ONE 2019, 14, e0210081. [Google Scholar] [CrossRef]
- Torres, A.; Menéndez, R.; España, P.P.; Fernández-Villar, J.A.; Marimón, J.M.; Cilloniz, C.; Méndez, R.; Egurrola, M.; Botana-Rial, M.; Ercibengoa, M.; et al. The Evolution and Distribution of Pneumococcal Serotypes in Adults Hospitalized With Community-Acquired Pneumonia in Spain Using a Serotype-Specific Urinary Antigen Detection Test: The CAPA Study, 2011–2018. Clin. Infect. Dis. 2021, 73, 1075–1085. [Google Scholar] [CrossRef]
- Levy, C.; Cohen, R. Pneumococcal conjugate vaccine schedule: 3+1, 2+1, or 1+1? Lancet Child Adolesc. Health 2024, 8, 774–775. [Google Scholar] [CrossRef]
- Ryman, J.; Weaver, J.; Hu, T.; Weinberger, D.M.; Yee, K.L.; Sachs, J.R. Predicting vaccine effectiveness against invasive pneumococcal disease in children using immunogenicity data. npj Vaccines 2022, 7, 140. [Google Scholar] [CrossRef]
- Saokaew, S.; Rayanakorn, A.; Wu, D.B.; Chaiyakunapruk, N. Cost Effectiveness of Pneumococcal Vaccination in Children in Low- and Middle-Income Countries: A Systematic Review. Pharmacoeconomics 2016, 34, 1211–1225. [Google Scholar] [CrossRef]







| Author and Publication Year | Study Design | Country | Population (Age in Days) | N (% Female) | Schedule | Schedule Primary Series | Schedule Booster | Evaluated Outcomes * | Risk of Bias |
|---|---|---|---|---|---|---|---|---|---|
| Korbal, 2024 [34] | RCT NCT04546425 | Europe and Australia | Healthy infants (42–112) | IG: 601 (50.2) CG: 603 (48.4) | 2 + 1 | 2–3, 4–5 months | 11–12 months | (1, 2, 3, 4) | Low |
| Senders, 2024 [35] | RCT NCT04382326 | United States/ Puerto Rico | Healthy infants (42–98) | IG: 1001 (48.3) CG: 987 (48.8) | 3 + 1 | 2, 4, 6 months | 12–15 months | (1, 2, 3, 4) | Low |
| Ishihara, 2024 [36] | RCT NCT04530838 | Japan | Healthy infants (60–180) | IG: 217 (48.8) CG: 224 (50.9) | 3 + 1 | ** | ** | (1, 2, 4) | Low |
| Senders, 2021 [37] | RCT NCT03512288 | United States | Healthy infants (42–98) | IG: 232 (48.3) CG: 228 (50.4) | 3 + 1 | 2–6, 4, 6 months | 12 months | (1, 2, 4) | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco-Haro, M.-D.; de Arenas-Arroyo, S.N.; Díaz-Goñi, V.; Velasco-Lucio, E.-J.; Castellares-González, C.-I.; Reynolds-Cortez, V.; Simeón-Prieto, A.; Ignateva, E.; Martínez-Vizcaíno, V. Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine Versus a 13-Valent Vaccine in Infants: A Systematic Review and Meta-Analysis. Vaccines 2025, 13, 1156. https://doi.org/10.3390/vaccines13111156
Pacheco-Haro M-D, de Arenas-Arroyo SN, Díaz-Goñi V, Velasco-Lucio E-J, Castellares-González C-I, Reynolds-Cortez V, Simeón-Prieto A, Ignateva E, Martínez-Vizcaíno V. Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine Versus a 13-Valent Vaccine in Infants: A Systematic Review and Meta-Analysis. Vaccines. 2025; 13(11):1156. https://doi.org/10.3390/vaccines13111156
Chicago/Turabian StylePacheco-Haro, María-Dolores, Sergio Núñez de Arenas-Arroyo, Valentina Díaz-Goñi, Elisa-Janeth Velasco-Lucio, Carol-Ingrid Castellares-González, Valeria Reynolds-Cortez, Adriana Simeón-Prieto, Elsa Ignateva, and Vicente Martínez-Vizcaíno. 2025. "Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine Versus a 13-Valent Vaccine in Infants: A Systematic Review and Meta-Analysis" Vaccines 13, no. 11: 1156. https://doi.org/10.3390/vaccines13111156
APA StylePacheco-Haro, M.-D., de Arenas-Arroyo, S. N., Díaz-Goñi, V., Velasco-Lucio, E.-J., Castellares-González, C.-I., Reynolds-Cortez, V., Simeón-Prieto, A., Ignateva, E., & Martínez-Vizcaíno, V. (2025). Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine Versus a 13-Valent Vaccine in Infants: A Systematic Review and Meta-Analysis. Vaccines, 13(11), 1156. https://doi.org/10.3390/vaccines13111156

