Abstract
Background/Objectives: Facial expressions are central to nonverbal communication and social cognition, and their recognition is shaped not only by facial features but also by contextual cues and prior experience. In high-threat contexts, rapid and accurate decoding of others’ emotions is adaptively advantageous. Grounded in neurocognitive models of face processing and vigilance, we tested whether brief perceptual adaptation to emotionally salient scenes, real-world disaster exposure, and pre-traumatic stress reactions enhance facial-emotion categorization. Methods: Fifty healthy adults reported prior direct exposure to catastrophic events (present/absent) and completed the Pre-Traumatic Stress Reactions Checklist (Pre-Cl; low/high). In a computerized task, participants viewed a single adaptor image for 5 s—negative (disaster), positive (pleasant environment), or neutral (phase-scrambled)—and then categorized a target face as emotional (fearful, angry, happy) or neutral as quickly and accurately as possible. Performance was compared across adaptation conditions and target emotions and examined as a function of disaster exposure and Pre-Cl. Results: Emotional adaptation (negative or positive) yielded better performance than neutral adaptation. Higher-order interactions among adaptation condition, target emotion, disaster exposure, and Pre-Cl indicated that the magnitude of facilitation varied across specific facial emotions and was modulated by both experiential (exposed vs. non-exposed) and dispositional (low vs. high Pre-Cl) factors. These effects support a combined influence of short-term contextual tuning and longer-term experience on facial-emotion categorization. Conclusions: Brief exposure to emotionally salient scenes facilitates subsequent categorization of facial emotions relative to neutral baselines, and this benefit is differentially shaped by prior disaster exposure and pre-traumatic stress. The findings provide behavioral evidence that short-term perceptual adaptation and longer-term experiential predispositions jointly modulate a fundamental communicative behavior, consistent with neurocognitive accounts in which context-sensitive visual pathways and salience systems dynamically adjust to support adaptive responding under threat.