Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Intervention
2.3.1. Sham-Stimulation Wash-In Phase
2.3.2. Whole-Body Vibration Phase
2.4. Outcome Measures
2.4.1. Walking Assessments
2.4.2. Spasticity Assessment
2.5. Data Analysis
3. Results
3.1. Demographics
3.2. Effects of WBV Dose on Outcome Measures
3.2.1. Walking Speed
3.2.2. Ankle Control
3.2.3. Reflex Excitability
3.3. Between-And Within-Phase Effects of WBV on Outcome Measures
3.3.1. Walking Speed (Figure 2)
3.3.2. Ankle Control (Figure 3)
3.3.3. Reflex Excitability (Figure 4)
3.4. Relationships Between Walking Speed, Ankle Control, and Low-Frequency Depression
4. Discussion
4.1. Walking Speed and Ankle Control
4.2. Reflex Modulation
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | Spinal Cord Injury |
WBV | Whole-body Vibration |
CST | Corticospinal Tract |
TA | Tibialis Anterior |
10MWT | 10 Meter Walk Test |
IMU | Inertial Measurement Unit |
LFD | Low-Frequency Depression |
ASIA | American Spinal Injury Association |
AIS | ASIA Impairment Scale |
LEMS | Lower Extremity Motor Score |
References
- Ditunno, P.L.; Patrick, M.; Stineman, M.; Ditunno, J.F. Who wants to walk? Preferences for recovery after SCI: A longitudinal and cross-sectional study. Spinal Cord 2008, 46, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, D.; Willerslev-Olsen, M.; Lundell, H.; Biering-Sorensen, F.; Nielsen, J.B. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Prog. Brain Res. 2015, 218, 79–101. [Google Scholar] [CrossRef]
- Capaday, C.; Lavoie, B.A.; Barbeau, H.; Schneider, C.; Bonnard, M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J. Neurophysiol. 1999, 81, 129–139. [Google Scholar] [CrossRef]
- Schubert, M.; Curt, A.; Jensen, L.; Dietz, V. Corticospinal input in human gait: Modulation of magnetically evoked motor responses. Exp. Brain Res. 1997, 115, 234–246. [Google Scholar] [CrossRef]
- Manella, K.J.; Roach, K.E.; Field-Fote, E.C. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J. Neurophysiol. 2013, 109, 2666–2679. [Google Scholar] [CrossRef] [PubMed]
- Estes, S.; Iddings, J.A.; Ray, S.; Kirk-Sanchez, N.J.; Field-Fote, E.C. Comparison of Single-Session Dose Response Effects of Whole Body Vibration on Spasticity and Walking Speed in Persons with Spinal Cord Injury. Neurotherapeutics 2018, 15, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Ness, L.L.; Field-Fote, E.C. Effect of whole-body vibration on quadriceps spasticity in individuals with spastic hypertonia due to spinal cord injury. Restor. Neurol. Neurosci. 2009, 27, 621–631. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Masani, K.; Alizadeh-Meghrazi, M.; Popovic, M.R.; Craven, B.C. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neurosci. Lett. 2010, 482, 66–70. [Google Scholar] [CrossRef]
- Ritzmann, R.; Krause, A.; Freyler, K.; Gollhofer, A. Acute whole-body vibration increases reciprocal inhibition. Hum. Mov. Sci. 2018, 60, 191–201. [Google Scholar] [CrossRef]
- Bosveld, R.; Field-Fote, E.C. Single-dose effects of whole body vibration on quadriceps strength in individuals with motor-incomplete spinal cord injury. J. Spinal Cord Med. 2015, 38, 784–791. [Google Scholar] [CrossRef]
- Ness, L.L.; Field-Fote, E.C. Whole-body vibration improves walking function in individuals with spinal cord injury: A pilot study. Gait Posture 2009, 30, 436–440. [Google Scholar] [CrossRef]
- Conforto, A.B.; Cohen, L.G.; dos Santos, R.L.; Scaff, M.; Marie, S.K. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J. Neurol. 2007, 254, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Conforto, A.B.; Kaelin-Lang, A.; Cohen, L.G. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann. Neurol. 2002, 51, 122–125. [Google Scholar] [CrossRef]
- Creech, C.J.; Hope, J.M.; Zarkou, A.; Field-Fote, E.C. Optimizing assessment of low frequency H-reflex depression in persons with spinal cord injury. PLoS ONE 2024, 19, e0300053. [Google Scholar] [CrossRef] [PubMed]
- Knikou, M.; Mummidisetty, C.K. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J. Neurophysiol. 2014, 111, 2264–2275. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Dudley-Javoroski, S.; Oza, P.D. Low-frequency H-reflex depression in trained human soleus after spinal cord injury. Neurosci. Lett. 2011, 499, 88–92. [Google Scholar] [CrossRef]
- Botter, A.; Vieira, T.M. Optimization of surface electrodes location for H-reflex recordings in soleus muscle. J. Electromyogr. Kinesiol. 2017, 34, 14–23. [Google Scholar] [CrossRef]
- Crone, C.; Hultborn, H.; Mazieres, L.; Morin, C.; Nielsen, J.; Pierrot-Deseilligny, E. Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: A study in man and the cat. Exp. Brain Res. 1990, 81, 35–45. [Google Scholar] [CrossRef]
- In, T.S.; Jung, J.H.; Jung, K.S.; Cho, H.Y. Effect of Sit-to-Stand Training Combined with Taping on Spasticity, Strength, Gait Speed and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. Life 2021, 11, 511. [Google Scholar] [CrossRef]
- Nakagawa, S. A farewell to Bonferroni: The problems of low statistical power and publication bias. Behav. Ecol. 2004, 15, 1044–1045. [Google Scholar] [CrossRef]
- Feise, R.J. Do multiple outcome measures require p-value adjustment? BMC Med. Res. Methodol. 2002, 2, 8. [Google Scholar] [CrossRef]
- Borenstein, M. Hypothesis testing and effect size estimation in clinical trials. Ann. Allergy Asthma Immunol. 1997, 78, 5–11; quiz 12–16. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Kinney, A.R.; Eakman, A.M.; Graham, J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020, 101, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Zhang, J.T.; Novak, A.C.; Brouwer, B.; Li, Q. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 2013, 34, N63–N69. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Gait Posture 2017, 54, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. The Ceiling Effect, the Floor Effect, and the Importance of Active and Placebo Control Arms in Randomized Controlled Trials of an Investigational Drug. Indian J. Psychol. Med. 2021, 43, 360–361. [Google Scholar] [CrossRef]
- Krause, A.; Gollhofer, A.; Freyler, K.; Jablonka, L.; Ritzmann, R. Acute corticospinal and spinal modulation after whole body vibration. J. Musculoskelet. Neuronal Interact. 2016, 16, 327–338. [Google Scholar]
- Musselman, K.E. Clinical significance testing in rehabilitation research: What, why, and how? Phys. Ther. Rev. 2007, 12, 287–296. [Google Scholar] [CrossRef]
- Klamruen, P.; Suttiwong, J.; Aneksan, B.; Muangngoen, M.; Denduang, C.; Klomjai, W. Effects of anodal transcranial direct current stimulation with overground gait training on lower limb performance in individuals with incomplete spinal cord injury: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2023, 105, 857–867. [Google Scholar] [CrossRef]
Subject ID | Sex | Age (Years) | Time Since Injury y (m) | AIS | Neurological Injury Level | LEMS (Weaker) | LEMS (Stronger) | LEMS (Total) | Spastic Leg | Bout Group |
---|---|---|---|---|---|---|---|---|---|---|
40 | F | 21 | 1 (0) | D | T11 | 24 (R) | 25 | 49 | R | Short |
43 | M | 49 | 29 (5) | D | C5 | 18 (R) | 25 | 43 | R | Short |
49 | F | 63 | 5 (8) | D | C5 | 21 (R) | 24 | 45 | R | Short |
53 | M | 45 | 1 (9) | D | C4 | 9 (L) | 17 | 26 | L | Short |
55 | M | 44 | 19 (11) | D | C2 | 11 (L) | 25 | 36 | L | Short |
64 | M | 69 | 2 (1) | D | C4 | 21 (R) | 24 | 45 | R | Short |
65 | M | 53 | 0 (6) | D | C3 | 25 (L) | 25 | 50 | L | Short |
67 | M | 60 | 3 (3) | D | C5 | 23 (L) | 24 | 47 | L | Short |
48 | M | 52 | 3 (4) | D | C4 | 23 (L) | 23 | 46 | L | Long |
52 | M | 61 | 2 (0) | D | C1 | 23 (L) | 25 | 48 | L | Long |
56 | M | 37 | 2 (6) | D | C3 | 13 (R) | 14 | 27 | L | Long |
60 | F | 29 | 0 (11) | D | T8 | 22 (R) | 22 | 44 | R | Long |
62 | M | 40 | 0 (8) | D | C4 | 21 (L) | 25 | 46 | L | Long |
70 | F | 59 | 4 (8) | D | C7 | 24 (R) | 25 | 49 | R | Long |
73 | F | 75 | 6 (11) | D | C6 | 14 (R) | 23 | 37 | R | Long |
74 | F | 61 | 15 (3) | D | C5 | 21 (L) | 24 | 45 | L | Long |
Dorsiflexion During Swing ° Δ | Low-Frequency Depression % Δ | 10MWT Walking Speed m/s Δ | |||||||
---|---|---|---|---|---|---|---|---|---|
Subject ID | Sham | WBV | Overall | Sham | WBV | Overall | Sham | WBV | Overall |
Short-Bout Group | |||||||||
40 | 0.17 | −4.13 | −3.96 | 27.85 | −32.35 | −4.50 | 0.09 | 0.01 | 0.09 |
43 | 8.45 | 0.78 | 9.23 | −1.31 | −35.09 | −36.41 | 0.04 | 0.08 | 0.11 |
49 | −0.5 | 3.25 | 2.75 | 8.54 | 15.3 | 23.84 | 0.04 | 0.00 | 0.04 |
53 | −5.16 | 5.74 | 0.58 | 18.82 | −1.89 | 16.93 | 0.40 | 0.03 | 0.42 |
55 | 0.96 | −1.38 | −0.42 | −15.38 | 0.75 | −14.64 | −0.09 | −0.03 | −0.12 |
64 | −0.24 | −2.86 | −3.09 | −34.03 | 25.69 | −8.35 | 0.08 | 0.01 | 0.09 |
65 | 2.98 | 1.21 | 4.19 | 6.04 | 15.22 | 21.26 | −0.09 | 0.14 | 0.06 |
67 | −3.96 | −0.39 | −4.35 | −28.07 | 19.82 | −8.25 | 0.00 | −0.05 | −0.05 |
Long-Bout Group | |||||||||
48 | −6 | 5.15 | −0.85 | −70.26 | 75.41 | 5.15 | 0.15 | −0.01 | 0.13 |
52 | −4.58 | 5.35 | 0.77 | −7.22 | −25.92 | −33.14 | 0.13 | 0.04 | 0.17 |
56 | −0.87 | −5.11 | −5.97 | 51.74 | −10.31 | 41.43 | −0.03 | 0.04 | 0.01 |
60 | −0.04 | −0.54 | −0.58 | −16.24 | −10.91 | −27.16 | −0.01 | 0.03 | 0.03 |
62 | 5.47 | −2.42 | 3.05 | 9.49 | −26.67 | −17.18 | 0.07 | 0.01 | 0.07 |
70 | −0.03 | −1.03 | −1.06 | 20.15 | 6.12 | 26.27 | −0.06 | 0.19 | 0.13 |
73 | −0.42 | −0.68 | −1.10 | −17.9 | −17.27 | −35.17 | 0.02 | 0.01 | 0.03 |
74 | −1.35 | 0.18 | −1.17 | 10.44 | −0.15 | 10.29 | −0.04 | 0.08 | 0.05 |
(a) | ||||||||||||
DF Δ Sham Phase | DF Δ WBV Phase | LFD Δ Sham Phase | LFD Δ WBV Phase | Speed Δ Sham Phase | Speed Δ WBV Phase | |||||||
r | p | r | p | r | p | r | p | r | p | r | p | |
DF Δ Sham Phase | −0.45 | 0.04 * | 0.29 | 0.14 | −0.52 | 0.02 * | −0.43 | 0.05 * | 0.31 | 0.12 | ||
DF Δ WBV Phase | −0.45 | 0.04 * | −0.37 | 0.08 | 0.34 | 1.00 | 0.55 | 0.01 * | 0.00 | 0.50 | ||
LFD Δ Sham Phase | 0.29 | 0.14 | −0.37 | 0.08 | −0.63 | 0.01 * | −0.08 | 0.38 | 0.42 | 0.05 * | ||
LFD Δ WBV Phase | −0.52 | 0.02 * | 0.34 | 1.00 | −0.63 | 0.01 * | 0.04 | 0.44 | −0.14 | 0.30 | ||
Speed Δ Sham Phase | −0.43 | 0.05 * | 0.55 | 0.01 * | −0.08 | 0.38 | 0.04 | 0.44 | −0.27 | 0.15 | ||
Speed Δ WBV Phase | 0.31 | 0.12 | 0.00 | 0.50 | 0.42 | 0.05 * | −0.14 | 0.30 | −0.27 | 0.15 | ||
(b) | ||||||||||||
DF Δ Overall | LFD Δ Overall | Speed Δ Overall | ||||||||||
r | p | r | p | r | p | |||||||
DF Δ Overall | −0.30 | 0.13 | 0.21 | 0.22 | ||||||||
LFD Δ Overall | −0.30 | 0.13 | 0.14 | 0.31 | ||||||||
Speed Δ Overall | 0.21 | 0.22 | 0.14 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hope, J.M.; Zarkou, A.; Suri, C.; Field-Fote, E.C. Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury. Brain Sci. 2025, 15, 405. https://doi.org/10.3390/brainsci15040405
Hope JM, Zarkou A, Suri C, Field-Fote EC. Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury. Brain Sciences. 2025; 15(4):405. https://doi.org/10.3390/brainsci15040405
Chicago/Turabian StyleHope, Jasmine M., Anastasia Zarkou, Cazmon Suri, and Edelle C. Field-Fote. 2025. "Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury" Brain Sciences 15, no. 4: 405. https://doi.org/10.3390/brainsci15040405
APA StyleHope, J. M., Zarkou, A., Suri, C., & Field-Fote, E. C. (2025). Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury. Brain Sciences, 15(4), 405. https://doi.org/10.3390/brainsci15040405