Effects of Propofol on Cortical Electroencephalograms in the Operation of Glioma-Related Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anesthesia
2.3. ECoG Recording and Assessing
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Effects of Low-Dose Propofol on ECoGs
3.2. Outcomes of Epilepsy Patients after Surgery
3.2.1. Early Outcomes of Epilepsy Patients
3.2.2. Long-Term Outcomes of Epilepsy Patients
4. Discussion
4.1. The Effects of Propofol on ECoGs
4.1.1. Activated ECoGs Caused by the Infusion of Low-Dose Propofol
4.1.2. The Change in ECoG Background Caused by the Infusion of Low-Dose Propofol
4.2. Guidance of Activated ECoGs during the Resection of Glioma and the Epileptogenic Zone
4.2.1. The Effects of Low-Dose Propofol on the ECoG
4.2.2. Surgical Treatment of Activated ECoGs Is Beneficial to Epilepsy Freedom
4.2.3. Surgical Treatment of Activated ECoGs Is Beneficial to AEEG Outcomes
4.3. Propofol Infusion-Activated ECoGs Are Dose-Dependent
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samudra, N.; Zacharias, T.; Plitt, A.; Lega, B.; Pan, E. Seizures in glioma patients: An overview of incidence, etiology, and therapies. J. Neurol. Sci. 2019, 404, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Engelberts, N.H.J.; van der Ploeg, H.M.; Kasteleijn-Nolst Trenité, D.G.A.; Aaronson, N.K.; Taphoorn, M.J.B.; Baaijen, H.; Vandertop, W.P.; Muller, M.; Postma, T.J.; et al. Epilepsy in low-grade gliomas: The impact on cognitive function and quality of life: Epilepsy in Low-Grade Glioma. Ann. Neurol. 2003, 54, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.; Chen, C.C.; Crawford, J.R.; Wang, S.G. Tumor-related epilepsy: Epidemiology, pathogenesis and management. J. Neurooncol. 2018, 139, 13–21. [Google Scholar] [CrossRef]
- Maschio, M. Brain Tumor-Related Epilepsy. Curr. Neuropharmacol. 2012, 10, 124–133. [Google Scholar] [CrossRef]
- Shuli, L.; Xing, F.; Ming, Z.; Xia, S.; Wenling, L.; Ping, D.; Gan, Y.; Zhen, H.; Xuejun, Y.; Guoming, L.; et al. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med. 2019, 8, 4527–4535. [Google Scholar]
- Avesani, M.; Formaggio, E.; Storti, S.; Alessandrini, F.; Bongiovanni, L.G.; Cordioli, C.; Beltramello, A.; Fiaschi, A.; Manganotti, P. f-MRI in Epilepsy with Spike and Wave Activity Evoked by Eye Closure: Different Bold Activation in a Patient with Idiopathic Partial Epilepsy with Occipital Spikes and a Control Group. Neuroradiol. J. 2008, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Foffani, G.; Uzcategui, Y.G.; Gal, B.; Menendez de la Prida, L. Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus. Neuron 2007, 55, 930–941. [Google Scholar] [CrossRef] [Green Version]
- Morales Chacón, L.M.; González González, J.; Ríos Castillo, M.; Berrillo Batista, S.; Batista García-Ramo, K.; Santos Santos, A.; Quintanal Cordero, N.; Zaldívar Bermúdez, M.; Garbey Fernández, R.; Estupiñan Díaz, B.; et al. Surgical Outcome in Extratemporal Epilepsies Based on Multimodal Pre-Surgical Evaluation and Sequential Intraoperative Electrocorticography. Behav. Sci. 2021, 11, 30. [Google Scholar] [CrossRef]
- Breshears, J.D.; Roland, J.L.; Sharma, M.; Gaona, C.M.; Freudenburg, Z.V.; Tempelhoff, R.; Avidan, M.S.; Leuthardt, E.C. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc. Natl. Acad. Sci. USA 2010, 107, 21170–21175. [Google Scholar] [CrossRef] [Green Version]
- Zijlmans, M.; Huiskamp, G.M.; Cremer, O.L.; Ferrier, C.H.; van Huffelen, A.C.; Leijten, F.S.S. Epileptic high-frequency oscillations in intraoperative electrocorticography: The effect of propofol: HFOs Propofol. Epilepsia 2012, 53, 1799–1809. [Google Scholar] [CrossRef]
- Martella, G.; De Persis, C.; Bonsi, P.; Natoli, S.; Cuomo, D.; Bernardi, G.; Calabresi, P.; Pisani, A. Inhibition of Persistent Sodium Current Fraction and Voltage-gated L-type Calcium Current by Propofol in Cortical Neurons: Implications for Its Antiepileptic Activity. Epilepsia 2005, 46, 624–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.A.; Tempelhoff, R.; Silbergeld, D.L.; Theard, M.A.; Haines, S.K.; Miller, J.W. Large-Dose Propofol Alone in Adult Epileptic Patients: Electrocorticographic Results. Anesth. Analg. 1996, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Hisada, K.; Morioka, T.; Fukui, K.; Nishio, S.; Kuruma, T.; Irita, K.; Takahashi, S.; Fukui, M. Effects of Sevoflurane and Isoflurane on Electrocorticographic Activities in Patients with Temporal Lobe Epilepsy. J. Neurosurg. Anesth. 2001, 13, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Boonyapisit, K.; Najm, I.; Klem, G.; Ying, Z.; Burrier, C.; LaPresto, E.; Nair, D.; Bingaman, W.; Prayson, R.; Lüders, H. Epileptogenicity of Focal Malformations Due to Abnormal Cortical Development: Direct Electrocorticographic-Histopathologic Correlations. Epilepsia 2003, 44, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Kacar Bayram, A.; Yan, Q.; Isitan, C.; Rao, S.; Spencer, D.D.; Alkawadri, R. Effect of anesthesia on electrocorticography for localization of epileptic focus: Literature review and future directions. Epilepsy Behav. 2021, 118, 107902. [Google Scholar] [CrossRef]
- Hughes, J.R.; Wang, C.C. The Relationship between Slow and Sharp Waves (Spikes) and Also Clinical Seizures. Clin. Electroencephalogr. 2002, 33, 165–170. [Google Scholar] [CrossRef]
- Chaturvedi, J.; Rao, M.B.; Arivazhagan, A.; Sinha, S.; Mahadevan, A.; Chowdary, M.R.; Raghavendra, K.; Shreedhara, A.S.; Pruthi, N.; Saini, J.; et al. Epilepsy surgery for focal cortical dysplasia: Seizure and quality of life (QOLIE-89) outcomes. Neurol. India 2018, 66, 1655–1666. [Google Scholar]
- Raith, K.; Steinberg, T.; Fischer, A. Continuous electroencephalographic monitoring of status epilepticus in dogs and cats: 10 patients (2004-2005). J. Vet. Emerg. Crit. Care San Antonio Tex 2001 2010, 20, 446–455. [Google Scholar]
- Traub, R.D.; Whittington, M.A.; Buhl, E.H.; LeBeau, F.E.N.; Bibbig, A.; Boyd, S.; Cross, H.; Baldeweg, T. A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures. Epilepsia 2008, 42, 153–170. [Google Scholar] [CrossRef]
- Walder, B.; Tramer, M.R.; Seeck, M. Seizure-like phenomena and propofol: A systematic review. Neurology 2002, 58, 1327–1332. [Google Scholar] [CrossRef]
- San-juan, D.; Chiappa, K.H.; Cole, A.J. Propofol and the electroencephalogram. Clin. Neurophysiol. 2010, 121, 998–1006. [Google Scholar] [CrossRef]
- Krendl, R.; Lurger, S.; Baumgartner, C. Absolute spike frequency predicts surgical outcome in TLE with unilateral hippocampal atrophy. Neurology 2008, 71, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Rosati, A.; Aghakhani, Y.; Bernasconi, A.; Olivier, A.; Andermann, F.; Gotman, J.; Dubeau, F. Intractable temporal lobe epilepsy with rare spikes is less severe than with frequent spikes. Neurology 2003, 60, 1290–1295. [Google Scholar] [CrossRef]
- Smith, M.; Smith, S.J.; Scott, C.A.; Harkness, W.F. Activation of the electrocorticogram by propofol during surgery for epilepsy. Br. J. Anaesth. 1996, 76, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Janszky, J.; Pannek, H.W.; Janszky, I.; Schulz, R.; Behne, F.; Hoppe, M.; Ebner, A. Failed surgery for temporal lobe epilepsy: Predictors of long-term seizure-free course. Epilepsy Res. 2005, 64, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Piva, S.; McCreadie, V.; Latronico, N. Neuroinflammation in Sepsis: Sepsis Associated Delirium. Cardiovasc. Hematol. Disord-Drug Targets 2015, 15, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Coenen, M.; Cabello, M.; Umlauf, S.; Ayuso-Mateos, J.L.; Anczewska, M.; Tourunen, J.; Leonardi, M.; Cieza, A.; PARADISE Consortium. Psychosocial difficulties from the perspective of persons with neuropsychiatric disorders. Disabil. Rehabil. 2016, 38, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; De Micheli, E.; Bricolo, A.; Ballini, C.; Fattori, M.; Venturi, C.; Pedata, F.; Tipton, K.F.; Corte, L.D. Extracellular Levels of Amino Acids and Choline in Human High Grade Gliomas: An Intraoperative Microdialysis Study. Neurochem. Res. 2004, 29, 325–334. [Google Scholar] [CrossRef]
- Kobayashi, M.; Oi, Y. Actions of Propofol on Neurons in the Cerebral Cortex. J. Nippon. Med. Sch. 2017, 84, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Ching, S.; Cimenser, A.; Purdon, P.L.; Brown, E.N.; Kopell, N.J. Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc. Natl. Acad. Sci. USA 2010, 107, 22665–22670. [Google Scholar] [CrossRef] [Green Version]
- Leijten, F.S.S.; Teunissen, N.W.; Wieneke, G.H.; Knape, J.T.A.; Schobben, A.F.A.M.; van Huffelen, A.C. Activation of Interictal Spiking in Mesiotemporal Lobe Epilepsy by Propofol-Induced Sleep. J. Clin. Neurophysiol. 2001, 18, 291–298. [Google Scholar]
Characteristics | The Epilepsy Group | The Control Group | p-Value |
---|---|---|---|
No. of patients | 239 | 67 | |
Preoperative AED therapy | Yes | No | |
Mean age (years) | 40.4 | 39.7 | 0.459 |
Males | 144 | 42 | 0.612 |
Follow-up time (month) | 18.5 | 19.3 | 0.528 |
Tumor side | 0.376 | ||
Lt | 102 | 25 | |
Rt | 137 | 42 | |
Histological tumor subtype | 0.652 | ||
Astrocytoma | 72 | 19 | |
Mixed oligoastrocytoma | 33 | 9 | |
Oligodendroglioma | 95 | 27 | |
Ganglioglioma | 27 | 8 | |
Others | 12 | 4 | |
Seizure-onset features | 0.668 | ||
Complex partial | 13 | 4 | |
Generalized tonic-clonic | 225 | 63 | |
Others | 1 | 0 | |
Tumor location (lobe) | 0.614 | ||
Temporal | 66 | 19 | |
Frontal | 123 | 35 | |
Parietal | 36 | 10 | |
Occipital | 14 | 3 | |
WHO grade | 0.677 | ||
I | 26 | 7 | |
II | 122 | 34 | |
III | 68 | 20 | |
IV | 33 | 6 |
ECoG Activated | ECoG Not Activated | Incidence Rate (%) | p-Value | |
---|---|---|---|---|
Epilepsy group (n = 239) | 177 | 62 | 74 | <0.001 |
Control Group (n = 67) | 6 | 61 | 9 |
With Early Seizure | Without Early Seizure | Incidence Rate (%) | p-Value | |
---|---|---|---|---|
Treated Group (n = 148) | 9 | 139 | 6 | <0.01 |
Untreated Group (n = 29) | 6 | 23 | 21 |
Engel Ⅰ | Engel Ⅱ–Ⅳ | Rate (%) | p-Value | |
---|---|---|---|---|
Treated Group (n = 148) | 142 | 6 | 96 | <0.01 |
Untreated Group (n = 29) | 22 | 7 | 76 |
NS and RS | MS and LS | Rate (%) | p-Value | |
---|---|---|---|---|
Treated Group (n = 148) | 112 | 36 | 76 | <0.01 |
Untreated Group (n = 29) | 8 | 21 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wei, Y.; Xie, Y.; Shi, Q.; Zhan, Y.; Dan, W.; Jiang, L. Effects of Propofol on Cortical Electroencephalograms in the Operation of Glioma-Related Epilepsy. Brain Sci. 2023, 13, 597. https://doi.org/10.3390/brainsci13040597
Li X, Wei Y, Xie Y, Shi Q, Zhan Y, Dan W, Jiang L. Effects of Propofol on Cortical Electroencephalograms in the Operation of Glioma-Related Epilepsy. Brain Sciences. 2023; 13(4):597. https://doi.org/10.3390/brainsci13040597
Chicago/Turabian StyleLi, Xin, Yu Wei, Yanfeng Xie, Quanhong Shi, Yan Zhan, Wei Dan, and Li Jiang. 2023. "Effects of Propofol on Cortical Electroencephalograms in the Operation of Glioma-Related Epilepsy" Brain Sciences 13, no. 4: 597. https://doi.org/10.3390/brainsci13040597
APA StyleLi, X., Wei, Y., Xie, Y., Shi, Q., Zhan, Y., Dan, W., & Jiang, L. (2023). Effects of Propofol on Cortical Electroencephalograms in the Operation of Glioma-Related Epilepsy. Brain Sciences, 13(4), 597. https://doi.org/10.3390/brainsci13040597