Changes in Adipokine, Resitin, and BDNF Concentrations in Treatment-Resistant Depression after Electroconvulsive Therapy
Abstract
:1. Introduction
2. Aim of the Study
3. Methodology
3.1. Participants
3.2. Inclusion and Exclusion Criteria
3.3. ECT Procedure
3.4. Serum Biomarker Determination
- -
- Adiponectin human ELISA kit, cat. no. DEE009 (Demeditec Diagnostics GmbH, Kiel, Germany). The standard curve ranged from 2 to 100 ng/mL. Detailed assay procedure available at: https://www.demeditec.com/en/products/adiponectin-human-elisa-dee009/ifu-dee009-adiponectin-elisa-ce-15a-02-21-m.pdf (accessed on 20 September 2023),
- -
- Human Resistin Quantikine ELISA kit, cat. no. DRSN00 (R&D Systems, Minneapolis, MN, USA). The standard curve ranged from 0.156 to 100 ng/mL. Detailed assay procedure available at: https://resources.rndsystems.com/pdfs/datasheets/drsn00.pdf?v=20230907&_ga=2.19695423.602324339.1694078552-1355354367.1694078552 (accessed on 20 September 2023),
- -
- DuoSet human BDNF, cat. no. DY248 (R&D Systems, Minneapolis, MN, USA). The standard curve ranged from 15.6 to 1000 pg/mL. Detailed assay procedure available at: https://resources.rndsystems.com/pdfs/datasheets/dy248.pdf?_ga=2.191597229.602324339.1694078552-1355354367.1694078552 (accessed on 20 September 2023).
3.5. Statistical Analysis
- -
- Wilcoxon’s paired order test—to test the significance of the difference in the level of the studied parameters at the time before and after electroconvulsive therapy (dependent samples),
- -
- Mann–Whitney U test—to test the significance of the difference in the level of the studied parameters in two groups (independent samples),
- -
- Spearman’s rank correlation coefficient test—to test the correlation between variables.
3.6. Ethical Approval
4. Results
5. Discussion
5.1. Adiponectin
- -
- higher concentrations in women (significant in post-T),
- -
- higher concentrations in patients who achieved an improvement in depressive symptoms (significant in pre- and post-T),
- -
- positive adiponectin concentration correlation with BDNF and negative correlation with resistin of moderate strength (significant in pre-T).
5.2. Resistin
5.3. BDNF
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 24 May 2023).
- Perez-Caballero, L.; Torres-Sanchez, S.; Romero-Lopez-Alberca, C.; Gonzalez-Saiz, F.; Mico, J.A.; Berrocoso, E. Monoaminergic system and depression. Cell Tissue Res. 2019, 377, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Galecki, P.; Talarowska, M. Inflammatory theory of depression. Psychiatr. Pol. 2018, 52, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Hankey Giblin, P.A. Insights into Macrophage Heterogeneity and Cytokine-Induced Neuroinflammation in Major Depressive Disorder. Pharmaceuticals 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur. J. Neurosci. 2021, 53, 183–221. [Google Scholar] [CrossRef]
- Kohler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef]
- Catena-Dell’Osso, M.; Rotella, F.; Dell’Osso, A.; Fagiolini, A.; Marazziti, D. Inflammation, serotonin and major depression. Curr. Drug Targets 2013, 14, 571–577. [Google Scholar] [CrossRef]
- Ramirez, L.A.; Perez-Padilla, E.A.; Garcia-Oscos, F.; Salgado, H.; Atzori, M.; Pineda, J.C. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary-adrenal axis. Biomedica 2018, 38, 437–450. [Google Scholar] [CrossRef]
- Juruena, M.F.; Bocharova, M.; Agustini, B.; Young, A.H. Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. J. Affect. Disord. 2018, 233, 45–67. [Google Scholar] [CrossRef]
- Kanchanatawan, B.; Sirivichayakul, S.; Thika, S.; Ruxrungtham, K.; Carvalho, A.F.; Geffard, M.; Anderson, G.; Noto, C.; Ivanova, R.; Maes, M. Physio-somatic symptoms in schizophrenia: Association with depression, anxiety, neurocognitive deficits and the tryptophan catabolite pathway. Metab. Brain Dis. 2017, 32, 1003–1016. [Google Scholar] [CrossRef]
- Anderson, G. Editorial: The Kynurenine and Melatonergic Pathways in Psychiatric and CNS Disorders. Curr. Pharm. Des. 2016, 22, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Leschik, J.; Lutz, B.; Gentile, A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int. J. Mol. Sci. 2021, 22, 7339. [Google Scholar] [CrossRef]
- Porter, G.A.; O’Connor, J.C. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J. Psychiatry 2022, 12, 77–97. [Google Scholar] [CrossRef]
- Rana, T.; Behl, T.; Sehgal, A.; Srivastava, P.; Bungau, S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J. Mol. Neurosci. 2021, 71, 2008–2021. [Google Scholar] [CrossRef]
- Nettis, M.A.; Pariante, C.M. Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. Int. Rev. Neurobiol. 2020, 152, 23–40. [Google Scholar] [CrossRef]
- Cinti, S. The endocrine adipose organ. Rev. Endocr. Metab. Disord. 2022, 23, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Lehto, S.M.; Huotari, A.; Niskanen, L.; Tolmunen, T.; Koivumaa-Honkanen, H.; Honkalampi, K.; Ruotsalainen, H.; Herzig, K.H.; Viinamaki, H.; Hintikka, J. Serum adiponectin and resistin levels in major depressive disorder. Acta Psychiatr. Scand. 2010, 121, 209–215. [Google Scholar] [CrossRef]
- Bloemer, J.; Pinky, P.D.; Govindarajulu, M.; Hong, H.; Judd, R.; Amin, R.H.; Moore, T.; Dhanasekaran, M.; Reed, M.N.; Suppiramaniam, V. Role of Adiponectin in Central Nervous System Disorders. Neural Plast. 2018, 2018, 4593530. [Google Scholar] [CrossRef]
- Islam, S.; Islam, T.; Nahar, Z.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Altered serum adiponectin and interleukin-8 levels are associated in the pathophysiology of major depressive disorder: A case-control study. PLoS ONE 2022, 17, e0276619. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, X.; Chen, J. Adiponectin and depression: A meta-analysis. Biomed. Rep. 2015, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, D.A.; Kratzsch, J.; Biemann, R.; Mergl, R.; Riedel-Heller, S.; Witte, V.; Villringer, A.; Kluge, M. Association Between Self-rating Depression Scores and Total Ghrelin and Adipokine Serum Levels in a Large Population-Based Sample. Front. Psychiatry 2022, 13, 891325. [Google Scholar] [CrossRef] [PubMed]
- Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Rocha, D.Q.; McIntyre, R.S.; Mesquita, L.M.; Kohler, C.A.; Hyphantis, T.N.; Sales, P.M.; Machado-Vieira, R.; Berk, M. Adipokines as emerging depression biomarkers: A systematic review and meta-analysis. J. Psychiatr. Res. 2014, 59, 28–37. [Google Scholar] [CrossRef]
- Weber-Hamann, B.; Kratzsch, J.; Kopf, D.; Lederbogen, F.; Gilles, M.; Heuser, I.; Deuschle, M. Resistin and adiponectin in major depression: The association with free cortisol and effects of antidepressant treatment. J. Psychiatr. Res. 2007, 41, 344–350. [Google Scholar] [CrossRef]
- Rahman, S.; Shanta, A.A.; Daria, S.; Nahar, Z.; Shahriar, M.; Qusar, M.S.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Increased serum resistin but not G-CSF levels are associated in the pathophysiology of major depressive disorder: Findings from a case-control study. PLoS ONE 2022, 17, e0264404. [Google Scholar] [CrossRef]
- Diaz, A.P.; Fernandes, B.S.; Quevedo, J.; Sanches, M.; Soares, J.C. Treatment-resistant bipolar depression: Concepts and challenges for novel interventions. Braz. J. Psychiatry 2022, 44, 178–186. [Google Scholar] [CrossRef]
- Touloumis, C. The burden and the challenge of treatment-resistant depression. Psychiatr. Psychiatr. 2021, 32 (Suppl. SI), 11–14. [Google Scholar] [CrossRef]
- Hermida, A.P.; Glass, O.M.; Shafi, H.; McDonald, W.M. Electroconvulsive Therapy in Depression: Current Practice and Future Direction. Psychiatr. Clin. N. Am. 2018, 41, 341–353. [Google Scholar] [CrossRef]
- Espinoza, R.T.; Kellner, C.H. Electroconvulsive Therapy. N. Engl. J. Med. 2022, 386, 667–672. [Google Scholar] [CrossRef]
- Deng, Z.D.; Robins, P.L.; Regenold, W.; Rohde, P.; Dannhauer, M.; Lisanby, S.H. How electroconvulsive therapy works in the treatment of depression: Is it the seizure, the electricity, or both? Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Arumugham, S.S.; Thirthalli, J. Adverse Effects of Electroconvulsive Therapy. Psychiatr. Clin. N. Am. 2016, 39, 513–530. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Lux, L.; Gartlehner, G.; Asher, G.; Forman-Hoffman, V.; Green, J.; Boland, E.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Defining treatment-resistant depression. Depress. Anxiety 2020, 37, 134–145. [Google Scholar] [CrossRef]
- BSPPS. Biological Section of the Polish Psychiatric Society. 2020. Available online: https://psychiatria.org.pl/news,tekst,397,leczenie_ielektrowstrzasowe_w_polsce_update_ (accessed on 24 May 2023).
- Zorena, K.; Jachimowicz-Duda, O.; Slezak, D.; Robakowska, M.; Mrugacz, M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, A.; Krzywotulski, M.; Lewandowska, A.; Chlopocka-Wozniak, M.; Bartkowska-Sniatkowska, A.; Michalak, M.; Rybakowski, J.K. Electroconvulsive therapy and cognitive functions in treatment-resistant depression. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2016, 17, 159–164. [Google Scholar] [CrossRef]
- Kellner, C.H.; Obbels, J.; Sienaert, P. When to consider electroconvulsive therapy (ECT). Acta Psychiatr. Scand. 2020, 141, 304–315. [Google Scholar] [CrossRef]
- EMA. Guideline for Good Clinical Practice E6(R2) Step 5; European Medicines Agency: London, UK, 2018.
- Rizzo, M.R.; Fasano, R.; Paolisso, G. Adiponectin and Cognitive Decline. Int. J. Mol. Sci. 2020, 21, 2010. [Google Scholar] [CrossRef]
- Soda, T.; McLoughlin, D.M.; Clark, S.R.; Oltedal, L.; Kessler, U.; Haavik, J.; Bousman, C.; Smith, D.J.; Bioque, M.; Clements, C.C.; et al. International Consortium on the Genetics of Electroconvulsive Therapy and Severe Depressive Disorders (Gen-ECT-ic). Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 921–932. [Google Scholar] [CrossRef]
- Subramanian, S.; Lopez, R.; Zorumski, C.F.; Cristancho, P. Electroconvulsive therapy in treatment resistant depression. J. Neurol. Sci. 2022, 434, 120095. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kim, H.; Kim, E.J.; Yook, V.; Chung, I.W.; Lee, S.M.; Jeon, H.J. Recent Updates on Electro-Convulsive Therapy in Patients with Depression. Psychiatry Investig. 2021, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Leo, R.; Di Lorenzo, G.; Tesauro, M.; Cola, C.; Fortuna, E.; Zanasi, M.; Troisi, A.; Siracusano, A.; Lauro, R.; Romeo, F. Decreased plasma adiponectin concentration in major depression. Neurosci. Lett. 2006, 407, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Platzer, M.; Fellendorf, F.T.; Bengesser, S.A.; Birner, A.; Dalkner, N.; Hamm, C.; Hartleb, R.; Queissner, R.; Pilz, R.; Rieger, A.; et al. Adiponectin is decreased in bipolar depression. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2019, 20, 813–820. [Google Scholar] [CrossRef]
- Formolo, D.A.; Lee, T.H.; Yau, S.Y. Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Mol. Neurobiol. 2019, 56, 7966–7976. [Google Scholar] [CrossRef]
- Benedetti, F.; Branchi, I.; Poletti, S.; Lorenzi, C.; Bigai, G.; Colombo, C.; Zanardi, R. Adiponectin predicts poor response to antidepressant drugs in major depressive disorder. Hum. Psychopharmacol. 2021, 36, e2793. [Google Scholar] [CrossRef]
- Soeiro-de-Souza, M.G.; Gold, P.W.; Brunoni, A.R.; de Sousa, R.T.; Zanetti, M.V.; Carvalho, A.F.; Gattaz, W.F.; Machado-Vieira, R.; Teixeira, A.L. Lithium decreases plasma adiponectin levels in bipolar depression. Neurosci. Lett. 2014, 564, 111–114. [Google Scholar] [CrossRef]
- Dmitrzak-Weglarz, M.; Tyszkiewicz-Nwafor, M.; Rybakowski, F.; Permoda-Pachuta, A. Changes in adipokine concentrations in antidepressant-resistant bipolar depression after ketamine infusion and electroconvulsive therapy. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2023, 24, 267–279. [Google Scholar] [CrossRef]
- Bandelow, B.; Baldwin, D.; Abelli, M.; Bolea-Alamanac, B.; Bourin, M.; Chamberlain, S.R.; Cinosi, E.; Davies, S.; Domschke, K.; Fineberg, N.; et al. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2017, 18, 162–214. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, T.L. Brain-derived neurotrophic factor and mental disorders. Biomed. J. 2020, 43, 134–142. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Meshkat, S.; Alnefeesi, Y.; Jawad, M.Y.; Di Vincenzo, J.D.; Rodrigues, N.B.; Ceban, F.; Lui, L.M.; McIntyre, R.S.; Rosenblat, J.D. Brain-Derived Neurotrophic Factor (BDNF) as a biomarker of treatment response in patients with Treatment Resistant Depression (TRD): A systematic review & meta-analysis. Psychiatry Res. 2022, 317, 114857. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Brunner, L.J. Type I error inflation in the presence of a ceiling effect. Am. Stat. 2003, 57, 97–104. [Google Scholar] [CrossRef]
- Brundin, L.; Achtyes, E. Has the time come to treat depression with anti-inflammatory medication? Acta Psychiatr. Scand. 2019, 139, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.; Hollander, Y.; Brown, G.R. Pretreatment with ibuprofen to prevent electroconvulsive therapy-induced headache. J. Clin. Psychiatry 2003, 64, 551–553. [Google Scholar] [CrossRef]
- Maffioletti, E.; Carvalho Silva, R.; Bortolomasi, M.; Baune, B.T.; Gennarelli, M.; Minelli, A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model—Are we there yet? Behav. Brain Res. 2018, 341, 79–90. [Google Scholar] [CrossRef]
Inclusion Criteria for the ECT Protocol | Exclusion Criteria for the Study | |
---|---|---|
Adults of both sexes, aged ≥18 | ||
Inpatients with diagnosed depression in the course of bipolar disorder in accordance with ICD-10 diagnostic criteria (diagnosis confirmed separately by two psychiatrists after a semi-structured interview) | Coexisting: schizophrenia or any psychotic features, depression in course of disorders other than bipolar disorders | |
No CNS diseases or injuries | Coexistence of serious general diseases such as epilepsy and other severe brain diseases (e.g., encephalitis, diseases with increased intracranial pressure, condition after a recent stroke) * | |
No cardiovascular disorders | Severe heart diseases (up to six months after myocardial infarction), significant hypertension, severe blood clotting disorders or significant anemia, aortic aneurysms, thrombophlebitis ** | |
Good general somatic health | Presence of serious somatic disorders or unstable chronic illness, (e.g., advanced osteoporosis or some ophthalmic diseases), pregnancy or breastfeeding * | |
Qualification by anesthetist and cardiologist | Contraindications to ECT therapy * | |
Lack of overweight or obesity | BMI ≥ 25 ** | |
Acceptance and informed consent to participate in the study | Lack of acceptance of study protocol and written informed consent | |
Current depressive episode, with 17-item HDRS score of at least 18 | HDRS < 18 | |
Treatment-resistant depression defined as lack of improvement after at least two courses of antidepressant and/or mood-stabilizing treatment (in optimal dosage and duration) | ||
Completion of treatment protocol | ||
Serum sample for laboratory tests | ||
Antidepressants discontinued during protocol | Lithium and mood-stabilizing antiepileptic drugs discontinued during protocol |
ECT (n = 54) Mean ± SD | ||||
---|---|---|---|---|
Age (years) | 54.27 ± 12.80 | |||
Onset of illness | 39.96 ± 14.13 | |||
Duration of illness (years) | 14.49 ± 11.70 | |||
Duration of current episode (weeks) | 35.14 ± 65.69 | |||
UD/BD | 29/25 | |||
Male/female | 15/39 | |||
Rec/non-rec | 38/16 | |||
Pre-T Mean ± SD | Post-T Mean ± SD | p Value | ||
Mean ± SD | ||||
HDRS | 32.11 ± 6.19 | 12.09 ± 7.65 | <0.000 * | |
Adiponectin (ng/mL) | 10,547.61 ± 7966.51 | 10,033.85 ± 6611.28 | 0.935 | |
ΔAdiponectin (%) | 7.31 ± 31.61% | |||
Resistin (ng/mL) | 13.56 ± 3.44 | 12.45 ± 4.39 | 0.108 | |
ΔResistin (%) | −7.09 ± 27.12% | |||
BDNF | 12,064.34 ± 3535.29 | 12,438.60 ± 3594.63 | 0.942 | |
ΔBDNF (%) | 19.58 ± 93.02% |
BD (F31) | UD (F33) | p Value | rg | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Pre-T | Adiponectin | 9572.32 ± 6620.64 | 12,448.05 ± 10,413.88 | 0.800 | |
Resistin | 15.07 ± 3.20 | 11.67 ± 2.63 | 0.023 | 0.620 | |
BDNF | 11,401.77 ± 3238.45 | 13,343.87 ± 3368.37 | 0.082 | ||
Post-T | Adiponectin | 9243.25 ± 5315.24 | 11,536.26 ± 8861.24 | 0.856 | |
Resistin | 14.06 ± 4.80 | 10.66 ± 1.92 | 0.015 | 0.654 | |
BDNF | 12,198.65 ± 4369.07 | 12,738.59 ± 2566.85 | 0.660 | ||
ΔAdiponectin | 6.55 ± 27.05% | 9.05 ± 41.67% | 0.856 | ||
ΔResistin | −4.90 ± 33.05% | −7.00 ± 14.31% | 0.971 | ||
ΔBDNF | 26.05 ± 117.55% | 1.92 ± 27.98% | 0.853 |
Female | Male | p Value | rg | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Pre-T | Adiponectin | 11,591.73 ± 7846.99 | 8310.21 ± 8359.85 | 0.091 | |
Resistin | 13.29 ± 3.13 | 14.15 ± 4.25 | 0.778 | ||
BDNF | 12,250.67 ± 3957.42 | 11,579.87 ± 2111.30 | 0.364 | ||
Post-T | Adiponectin | 11,473.72 ± 7188.34 | 6948.43 ± 4015.38 | 0.011 | 0.695 |
Resistin | 12.78 ± 5.06 | 11.74 ± 2.64 | 0.481 | ||
BDNF | 12,757.23 ± 3574.03 | 11,652.64 ± 3646.08 | 0.241 | ||
ΔAdiponectin | 6.37 ± 24.69% | 9.32 ± 45.48% | 1.000 | ||
ΔResistin | −3.81 ± 29.91% | −14.11 ± 20.06% | 0.205 | ||
ΔBDNF | 26.12 ± 107.69% | 3.44 ± 36.20% | 0.968 |
rec | Non-rec | p Value | rg | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Pre-T | Adiponectin | 11,576.54 ± 8112.95 | 4031.03 ± 498.75 | 0.028 | 0.825 |
Resistin | 13.31 ± 3.15 | 15.15 ± 5.55 | 0.774 | ||
BDNF | 11,531.21 ± 3868.86 | 13,330.52 ± 2192.95 | 0.061 | ||
Post-T | Adiponectin | 10,695.16 ± 6899.17 | 5845.57 ± 300.94 | 0.035 | 0.789 |
Resistin | 13.03 ± 4.11 | 8.77 ± 5.20 | 0.151 | ||
BDNF | 12,267.24 ± 4034.14 | 12,861.28 ± 2225.66 | 0.408 | ||
ΔAdiponectin | 1.21 ± 29.37% | 45.96 ± 11.59% | 0.045 | 0.754 | |
ΔResistin | −1.55 ± 23.24% | −42.14 ± 26.96% | 0.028 | 0.825 | |
ΔBDNF | 27.33 ± 109.10% | 0.47 ± 19.08% | 0.856 |
ECT Pre-T vs. Post-T | |||
---|---|---|---|
Z | p Value | ||
Adiponectin | |||
Total | 0.08 | 0.935 | |
Male | 0.17 | 0.866 | |
Female | 0.23 | 0.820 | |
Rec | 0.68 | 0.494 | |
Non-rec | 1.60 | 0.109 | |
BD | 0.07 | 0.944 | |
UD | 0.07 | 0.944 | |
Resistin | |||
Total | 1.61 | 0.108 | |
Male | 1.86 | 0.063 | |
Female | 0.74 | 0.460 | |
Rec | 0.93 | 0.355 | |
Non-rec | 1.34 | 0.181 | |
BD | 0.70 | 0.485 | |
UD | 1.33 | 0.183 | |
BDNF | |||
Total | 0.07 | 0.942 | |
Male | 0.11 | 0.910 | |
Female | 0.04 | 0.970 | |
Rec | 0.10 | 0.922 | |
Non-rec | 0.34 | 0.733 | |
BD | 0.44 | 0.657 | |
UD | 0.03 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Permoda-Pachuta, A.; Malewska-Kasprzak, M.; Skibińska, M.; Rzepski, K.; Dmitrzak-Węglarz, M. Changes in Adipokine, Resitin, and BDNF Concentrations in Treatment-Resistant Depression after Electroconvulsive Therapy. Brain Sci. 2023, 13, 1358. https://doi.org/10.3390/brainsci13101358
Permoda-Pachuta A, Malewska-Kasprzak M, Skibińska M, Rzepski K, Dmitrzak-Węglarz M. Changes in Adipokine, Resitin, and BDNF Concentrations in Treatment-Resistant Depression after Electroconvulsive Therapy. Brain Sciences. 2023; 13(10):1358. https://doi.org/10.3390/brainsci13101358
Chicago/Turabian StylePermoda-Pachuta, Agnieszka, Magda Malewska-Kasprzak, Maria Skibińska, Krzysztof Rzepski, and Monika Dmitrzak-Węglarz. 2023. "Changes in Adipokine, Resitin, and BDNF Concentrations in Treatment-Resistant Depression after Electroconvulsive Therapy" Brain Sciences 13, no. 10: 1358. https://doi.org/10.3390/brainsci13101358
APA StylePermoda-Pachuta, A., Malewska-Kasprzak, M., Skibińska, M., Rzepski, K., & Dmitrzak-Węglarz, M. (2023). Changes in Adipokine, Resitin, and BDNF Concentrations in Treatment-Resistant Depression after Electroconvulsive Therapy. Brain Sciences, 13(10), 1358. https://doi.org/10.3390/brainsci13101358