Influence of Speech and Cognitive Load on Balance and Timed up and Go
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.2.1. Balance Assessment
2.2.2. Mobility Task
2.2.3. Cognitive Task
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pellecchia, G.L. Postural Sway Increases with Attentional demands of concurrent cognitive task. Gait Posture 2003, 18, 29–34. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Kuznetsov, N.A.; Riley, M.A. Effects of breathing on multijoint control of center of mass position during upright stance. J. Mot. Behav. 2012, 44, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, O.; Van Muylem, A.; Leduc, D.; Jansen, B.; Feipel, V.; Van Sint Jan, S.; Bonnechère, B. Validation of the Wii Balance Board to assess balance modifications induced by increased respiratory loads in healthy subjects. Gait Posture 2019, 68, 449–452. [Google Scholar] [CrossRef]
- Janssens, L.; Brumagne, S.; Polspoel, K.; Troosters, T.; McConnell, A. The effect of inspiratory muscles fatigue on postural control in people with and without recurrent low back pain. Spine 2010, 35, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Hagio, K.; Obata, H.; Nakazawa, K. Effects of breathing movement on the reduction of postural sway during postural-cognitive dual tasking. PLoS ONE 2018, 13, e0197385. [Google Scholar] [CrossRef] [PubMed]
- Caron, O.; Fontanari, P.; Cremieux, J.; Joulia, F. Effects of ventilation on body sway during human standing. Neurosci. Lett. 2004, 366, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Binazzi, B.; Lanini, B.; Bianchi, R.; Romagnoli, I.; Nerini, M.; Gigliotti, F.; Duranti, R.; Milic-Emili, J.; Scano, G. Breathing pattern and kinematics in normal subjects during speech, singing and loud whispering. Acta Physiol. 2006, 186, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Gardner, M.; Leadbetter, A.; Lavie, N. Effect of articulatory and mental tasks on postural control. Neuroreport 1999, 10, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Andersson, G.; Hagman, J.; Talianzadeh, R.; Svedberg, A.; Larsen, H.C. Effect of cognitive load on postural control. Brain Res. Bull. 2002, 58, 135–139. [Google Scholar] [CrossRef]
- Vuillerme, N.; Nafati, G. How attentional focus on body sway affects postural control during quiet standing. Psychol. Res. 2007, 71, 192–200. [Google Scholar] [CrossRef]
- Vuillerme, N.; Nougier, V.; Teasdale, N. Effects of a reaction time task on postural control in humans. Neurosci. Lett. 2000, 291, 77–80. [Google Scholar] [CrossRef]
- Tremoureux, L.; Raux, M.; Ranohavimparany, A.; Morélot-Panzini, C.; Pouget, P.; Similowski, T. Electroencephalographic evidence for a respiratory-related cortical activity specific of the preparation of prephonatory breaths. Respir Physiol. Neurobiol. 2014, 204, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Yogev, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 23, 329–472. [Google Scholar] [CrossRef] [Green Version]
- Srygley, J.M.; Mirelman, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. When does walking alter thinking? Age and task associated findings. Brain Res. 2009, 1253, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brustio, P.R.; Magistro, D.; Zecca, M.; Rabaglietti, E.; Liubicich, M.E. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study. PLoS ONE 2017, 12, e0181698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPherson, M.K. Cognitive Load Affects Speech Motor Performance Differently in Older and Younger Adults. J. Speech Lang. Hear. Res. 2019, 62, 1258–1277. [Google Scholar] [CrossRef]
- García, A.M.; Ibáñez, A. A touch with words: Dynamic synergies between manual actions and language. Neurosci. Biobehav. Rev. 2016, 68, 59–95. [Google Scholar] [CrossRef] [PubMed]
- Dault, M.C.; Yardley, L.; Frank, J.S. Does articulation contribute to modifications of postural control during dual-task paradigms? Brain Res. Cogn. Brain Res. 2003, 16, 434–440. [Google Scholar] [CrossRef]
- Rodriguez, A.D.; McCabe, M.L.; Nocera, J.R.; Reilly, J. Concurrent Word Generation and Motor Performance: Further Evidence for Language-Motor Interaction. PLoS ONE 2012, 7, e37094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armieri, A.; Holmes, J.D.; Spaulding, S.J.; Jenkins, M.E.; Johnson, A.M. Dual task performance in a healthy young adult population: Results from a symmetric manipulation of task complexity and articulation. Gait Posture 2009, 29, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Plummer-D’Amato, P.; Altmann, L.J.P.; Saracino, D.; Fox, E.; Behrman, A.L.; Marsiske, M. Interactions between cognitive tasks and gait after stroke: A dual task study. Gait Posture 2008, 27, 683–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Li, K.Z.H.; Bherer, L.; Mirelman, A.; Maidan, I.; Hausdorff, J.M. Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective. Front. Neurol. 2018, 9, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobach, T.; Wendt, M.; Janczyk, M. Editorial: Multitasking: Executive Functioning in Dual-Task and Task Switching Situations. Front. Psychol. 2018, 9, 108. [Google Scholar] [CrossRef]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-motor dual-task interference: A systematic review of neural correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef] [Green Version]
- MacPherson, S.E. Definition: Dual-tasking and multitasking. Cortex 2018, 106, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Rooze, M.; Van Sint Jan, S. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment. JMIR Rehabil. Assist. Technol. 2015, 2, e8. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Mentiplay, B.F.; Pua, Y.-H.; Bower, K.J. Reliability and validity of the Wii Balance Board for assessment of standing balance: A systematic review. Gait Posture 2018, 61, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Ward, N.; Menta, A.; Ulichney, V.; Raileanu, C.; Wooten, T.; Hussey, E.K.; Marfeo, E. The Specificity of Cognitive-Motor Dual-Task Interference on Balance in Young and Older Adults. Front. Aging Neurosci. 2021, 13, 804936. [Google Scholar] [CrossRef]
- Gursoy, Z.G.; Yilmaz, U.; Celik, H.; Arpinar-Avsar, P.; Kirazci, S. Effect of individualized cognitive and postural task difficulty levels on postural control during dual task condition. Gait Posture 2022, 96, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Schweiger, A.; Herman, T.; Yogev-Seligmann, G.; Giladi, N. Dual-task decrements in gait: Contributing factors among healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Kovash, F.M.; Kubik, J.J.; Linbo, R.A. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007, 26, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Plummer, P.; Altmann, L.; Feld, J.; Zukowski, L.; Najafi, B.; Giuliani, C. Attentional prioritization in dual-task walking: Effects of stroke, environment, and instructed focus. Gait Posture 2020, 79, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, A.; Paoli, A.; Andretta, M.; Vidorin, F.; Marcolin, G. Are Static and Dynamic Postural Balance Assessments Two Sides of the Same Coin? A Cross-Sectional Study in the Older Adults. Front. Physiol. 2021, 12, 681370. [Google Scholar] [CrossRef] [PubMed]
- Kwok, B.-C.; Clark, R.A.; Pua, Y.-H. Novel use of the Wii Balance Board to prospectively predict falls in community-dwelling older adults. Clin. Biomech. 2015, 30, 481–484. [Google Scholar] [CrossRef]
- Clavel, L.; Attali, V.; Rivals, I.; Niérat, M.-C.; Laveneziana, P.; Rouch, P.; Similowski, T.; Sandoz, B. Decreased respiratory-related postural perturbations at the cervical level under cognitive load. Eur. J. Appl. Physiol. 2020, 120, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, D.; Giannakopoulos, N.N.; Blaser, R.; Eberhard, L.; Schindler, H.J. The effect of various jaw motor tasks on body sway. J. Oral Rehabil. 2011, 38, 729–736. [Google Scholar] [CrossRef]
- Varghese, J.P.; Beyer, K.B.; Williams, L.; Miyasike-daSilva, V.; McIlroy, W.E. Standing still: Is there a role for the cortex? Neurosci. Lett. 2015, 590, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Rotem-Galili, Y.; Mirelman, A.; Dickstein, R.; Giladi, N.; Hausdorff, J.M. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys. Ther. 2010, 90, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchet, O.; Dubost, V.; Aminian, K.; Gonthier, R.; Kressig, R.W. Dual-task-related gait changes in the elderly: Does the type of cognitive task matter? J. Mot. Behav. 2005, 37, 259–264. [Google Scholar]
- Chang, W.-H.; Tang, P.-F.; Wang, Y.-H.; Lin, K.-H.; Chiu, M.-J.; Chen, S.-H.A. Role of the premotor cortex in leg selection and anticipatory postural adjustments associated with a rapid stepping task in patients with stroke. Gait Posture 2010, 32, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-T.; Yeh, N.-C.; Yang, Y.-R.; Hsu, W.-C.; Liao, Y.-Y.; Wang, R.-Y. Effects of different dual task training on dual task walking and responding brain activation in older adults with mild cognitive impairment. Sci. Rep. 2022, 12, 8490. [Google Scholar] [CrossRef] [PubMed]
- Akin, H.; Senel, A.; Taskiran, H.; Kaya Mutlu, E. Do motor-cognitive and motor-motor dual task training effect differently balance performance in older adults? Eur. Geriatr. Med. 2021, 12, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Spanò, B.; Lombardi, M.G.; De Tollis, M.; Szczepanska, M.A.; Ricci, C.; Manzo, A.; Giuli, S.; Polidori, L.; Griffini, I.A.; Adriano, F.; et al. Effect of Dual-Task Motor-Cognitive Training in Preventing Falls in Vulnerable Elderly Cerebrovascular Patients: A Pilot Study. Brain Sci. 2022, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Wollesen, B.; Voelcker-Rehage, C. Training effects on motor–cognitive dual-task performance in older adults. Eur. Rev. Aging Phys. Act. 2014, 11, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Hakamy, A.; Bolton, C.E.; Gibson, J.E.; McKeever, T.M. Risk of fall in patients with COPD. Thorax 2018, 73, 1079–1080. [Google Scholar] [CrossRef]
Balance | ||
---|---|---|
Name | Description | Equation |
DOT | Total displacement of sway | |
Area | The area of the 95% prediction ellipse (often referred to as the 95% confidence ellipse) | |
AP RoM | The distance between the maximum and minimum COP displacement in the antero-posterior direction | ) |
ML RoM | The distance between the maximum and minimum COP displacement in the medio lateral direction | ) |
AP SD | The dispersion of COP displacement from the mean position in the antero-posterior direction | |
ML SD | The dispersion of COP displacement from the mean position in the medio-lateral direction | |
AP velocity | The mean AP velocity of COP displacement | |
ML velocity | The mean ML velocity of COP displacement | |
TMV | The AP and ML displacements of the total COP sway divided by the total duration of the trial | |
Motor and Cognitive Interaction | ||
Name | Description | Equation |
CCR | Correct response rate | |
DTCcogn | Dual-task cost cognitive expressed in percent. A negative value indicates improvement, while a positive value indicates worse performance. | |
DTCmob | Dual-task cost mobility in percent. A negative value indicates improvement, while a positive value indicates worse performance. | |
SP | The effect of speech production on postural control | |
CLO | The effect of cognitive load level on postural control during oral tasks | |
CLM | The effect of cognitive load level on postural control during mental tasks |
Variables | Control | Oral 3 | Mental 3 | Oral 7 | Mental 7 | p-Values | ||
---|---|---|---|---|---|---|---|---|
Cond. | Cogn. | Inter. | ||||||
DOT (mm) | 1303 (438) | 1109 (324) | 1171 (464) | 1195 (462) | 1199 (521) | 0.074 | 0.92 | 0.16 |
Area (mm²) | 3488 (2956) | 2775 (3120) | 2476 (3552) | 3472 (4700) | 2825 (2963) | 0.078 | 0.72 | 0.63 |
ML RoM (mm) | 38 (19) | 33 (30) | 32 (21) | 37 (28) | 38 (20) | 0.021 | 0.53 | 0.93 |
AP RoM (mm) | 161 (91) | 137 (96) | 148 (74) | 174 (121) | 158 (83) | 0.029 | 0.87 | 0.32 |
ML SD (mm) | 5.6 (2.7) | 5.3 (3.9) | 5.4 (4.5) | 5.4 (5.0) | 6.4 (3.2) | 0.056 | 0.54 | 0.99 |
AP SD (mm) | 30.4 (17.9) | 25.4 (12.8) | 27.4 (19.9) | 30.8 (21.9) | 26.1 (14.7) | 0.081 | 0.99 | 0.12 |
MVml (mm/s) | 2.8 (0.5) | 3.1 (0.6) | 2.7 (0.5) | 3.0 (0.6) | 2.7 (0.4) | <0.001 | 0.34 | 0.38 |
MVap (mm/s) | 6.1 (1.3) | 7.8 (1.9) | 6.0 (1.4) | 7.9 (2.5) | 6.0 (1.3) | <0.001 | 0.52 | 0.21 |
TMV (mm/s) | 7.50 (1.53) | 11.2 (3.70) | 9.19 (6.35) | 12.0 (5.95) | 8.00 (2.90) | <0.001 | 0.82 | 0.19 |
TUG, s | 4.82 (0.62) | 5.77 (1.03) | 5.66 (1.21) | 6.25 (1.22) | 5.80 (1.32) | <0.001 | 0.43 | 0.21 |
Balance | |||
---|---|---|---|
Parameters | Conditions | Oral | Mental |
Cognitive | 3 | 4 [−19; 3]% | / |
7 | 6 [−25; 37]% | / | |
MVml | 3 | 30 [14; 47]% | 6 [−7; 18]% |
7 | 25 [8; 42]% | 0 [−8; 9]% | |
MVap | 3 | 44 [24; 64]% | 9 [−6; 25]% |
7 | 44 [28; 60]% | 1 [−12; 15]% | |
TMV | 3 | 40 [23; 57]% | 8 [−5; 22]% |
7 | 39 [25; 54]% | 2 [−10; 14]% | |
TUG | |||
Cognitive | 3 | 4 [−12; 19]% | / |
7 | 67 [59; 75]% | / | |
Time (mobility) | 3 | 20 [14; 26]% | 17 [11; 23]% |
7 | 30 [23; 36]% | 20 [13; 26]% |
Balance | |||||
---|---|---|---|---|---|
Effect of Speech Production | Diff. | p-Value | Cognitive Load Level | Diff. | p-Value |
SP3 MVml | −25 [−45; −3]% | 0.0001 | CLO MVml | 5 [−18; 29]% | 0.334 |
SP3 MVap | −35 [−60; −10]% | 0.0002 | CLO MVap | −0 [−25; 26]% | 0.961 |
SP3 TMV | −32 [−54; −9]% | 0.0001 | CLO TMV | 1 [−22; 2]% | 0.842 |
SP7 MVml | −25 [−44; −17]% | 0.003 | CLM MVml | 5 [−11; 21]% | 0.389 |
SP7 MVap | −43 [−64; −21]% | 3.19 × 10−5 | CLM MVap | 8 [−13; 29]% | 0.429 |
SP7 TMV | −37 [−56; −17]% | 4.69 × 10−5 | CLM TMV | 6 [−12; 25]% | 0.411 |
TUG | |||||
SP3 | 3 [−6; 11]% | 0.343 | CLO | −11 [−26; −13]% | 0.00025 |
SP7 | 10 [1; 20]% | 0.0014 | CLM | −3 [−11; −6]% | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Hove, O.; Pichon, R.; Pallanca, P.; Cebolla, A.M.; Noel, S.; Feipel, V.; Deboeck, G.; Bonnechère, B. Influence of Speech and Cognitive Load on Balance and Timed up and Go. Brain Sci. 2022, 12, 1018. https://doi.org/10.3390/brainsci12081018
Van Hove O, Pichon R, Pallanca P, Cebolla AM, Noel S, Feipel V, Deboeck G, Bonnechère B. Influence of Speech and Cognitive Load on Balance and Timed up and Go. Brain Sciences. 2022; 12(8):1018. https://doi.org/10.3390/brainsci12081018
Chicago/Turabian StyleVan Hove, Olivier, Romain Pichon, Pauline Pallanca, Ana Maria Cebolla, Sarah Noel, Véronique Feipel, Gaël Deboeck, and Bruno Bonnechère. 2022. "Influence of Speech and Cognitive Load on Balance and Timed up and Go" Brain Sciences 12, no. 8: 1018. https://doi.org/10.3390/brainsci12081018