Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response
Abstract
1. Introduction
2. Proposed Method
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, Q.; Shao, F.; Lin, W.; Jiang, G. Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder. Pattern Recognit. 2018, 76, 242–255. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wu, J.L. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Trans. Image Process. 2014, 23, 1527–1542. [Google Scholar] [PubMed]
- Li, Q.; Lin, W.; Fang, Y. BSD: Blind image quality assessment based on structural degradation. Neurocomputing 2017, 236, 93–103. [Google Scholar] [CrossRef]
- Akhter, R.; Baltes, J.; Sazzed, Z.; Horita, Y. No-reference stereoscopic image quality assessment. In Stereoscopic Displays and Applications XXI; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7524, p. 75240T. [Google Scholar]
- Chen, M.-J.; Cormack, L.K.; Bovik, A.C. No-Reference quality assessment of natural stereopairs. IEEE Trans. Image Process. 2013, 22, 3379–3391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, S.; Pan, T.; Yu, L.; Qiu, W.; Zhou, Y.; Luo, T. Blind 3D image quality assessment based on self-similarity of binocular features. Neurocomputing 2017, 224, 128–134. [Google Scholar] [CrossRef]
- Jiang, G.; He, M.; Yu, M.; Shao, F.; Peng, Z. Perceptual stereoscopic image quality assessment method with tensor decomposition and manifold learning. IET Image Process. 2018, 12, 810–818. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Li, W. Blind stereoscopic video quality assessment: From depth perception to overall experience. IEEE Trans. Image Process. 2018, 27, 721–734. [Google Scholar] [CrossRef]
- Yue, G.; Hou, C.; Jiang, Q.; Yang, Y. Blind stereoscopic 3D image quality assessment via analysis of naturalness, structure, and binocular asymmetry. Signal Process. 2018, 150, 204–214. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, B.; Wang, Y.; Lu, W.; Meng, Q. Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process. Inf. Sci. 2018, 430, 1–16. [Google Scholar] [CrossRef]
- Liu, L.; Yang, B.; Huang, H. No-reference stereopair quality assessment based on singular value decomposition. Neurocomputing 2018, 275, 1823–1835. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Z.; Li, W. Dual-Stream Interactive Networks for No-Reference Stereoscopic Image Quality Assessment. IEEE Trans. Image Process. 2019, 28, 3946–3958. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Lin, W.; Wang, S.; Jiang, G.; Yu, M.; Dai, Q. Learning receptive fields and quality lookups for blind quality assessment of stereoscopic images. IEEE Trans. Cybern. 2016, 46, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, L.; Qiu, W.; Luo, T.; Wang, Z.; Wu, M.W. Utilizing binocular vision to facilitate completely blind 3D image quality measurement. Signal Process. 2016, 129, 130–136. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Bovik, A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zhang, L.; Mou, X. Learning without human scores for blind image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 995–1002. [Google Scholar]
- Zhou, W.; Yu, L.; Qiu, W.; Zhou, Y.; Wu, M. Local gradient patterns (LGP): An effective local statistical features extraction scheme for no-reference image quality assessment. Inf. Sci. 2017, 397, 1–14. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, L.; Zhou, Y.; Qiu, W.; Wu, M.-W.; Luo, T. Local and global feature learning for blind quality evaluation of screen content and natural scene images. IEEE Trans. Image Process. 2018, 27, 2086–2095. [Google Scholar] [CrossRef]
- Mobile 3DTV Content Delivery Optimization over DVB-H System. Available online: http://sp.cs.tut.fi/mobile3dtv/stereo-video/ (accessed on 16 March 2011).
- Levelt, W.J. The alternation process in binocular rivalry. Br. J. Psychol. 1966, 57, 225–238. [Google Scholar] [CrossRef]
- Klaus, A.; Sormann, M.; Karner, K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Chen, M.J.; Su, C.C.; Kwon, D.K.; Cormack, L.K.; Bovik, A.C. Full-reference quality assessment of stereopairs accounting for rivalry. Signal Process. Image Commun. 2013, 28, 1143–1155. [Google Scholar] [CrossRef]
- Su, C.-C.; Bovik, A.C.; Cormack, L.K. Natural scene statistics of color and range. In Proceedings of the 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 257–260. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Ojala, T.; Pietikinen, M.; Menp, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
Criteria | FR | Blind | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Depending on Difference Mean Opinion Scores (DMOS) | Not Depending on DMOS | ||||||||||
SSIM | Lin [2] | Akhter [4] | Chen [5] | Yue [9] | Zhou [12] | IL_NIQE | Xue [16] | Shao [13] | Zhou [14] | Proposed | |
PLCC | 0.899 | 0.873 | 0.640 | 0.901 | 0.937 | 0.973 | 0.896 | 0.871 | 0.877 | 0.887 | 0.925 |
SROCC | 0.882 | 0.830 | 0.395 | 0.899 | 0.914 | 0.965 | 0.876 | 0.873 | 0.866 | 0.892 | 0.887 |
Distortion | Criteria | FR | Blind | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depending on DMOS | Not Depending on DMOS | |||||||||||
SSIM | Lin [2] | Akhter [4] | Chen [5] | Yue [9] | Zhou [12] | IL_NIQE | Xue [16] | Shao [13] | Zhou [14] | Proposed | ||
JP2K | PLCC | 0.865 | 0.838 | 0.905 | 0.907 | 0.934 | 0.988 | 0.854 | 0.919 | 0.901 | 0.848 | 0.939 |
SROCC | 0.857 | 0.839 | 0.866 | 0.863 | 0.832 | 0.961 | 0.861 | 0.886 | 0.870 | 0.837 | 0.887 | |
JPEG | PLCC | 0.485 | 0.214 | 0.729 | 0.695 | 0.744 | 0.916 | 0.533 | 0.722 | 0.456 | 0.626 | 0.673 |
SROCC | 0.435 | 0.199 | 0.675 | 0.617 | 0.595 | 0.912 | 0.544 | 0.682 | 0.429 | 0.638 | 0.612 | |
WN | PLCC | 0.937 | 0.928 | 0.904 | 0.917 | 0.962 | 0.988 | 0.927 | 0.858 | 0.950 | 0.925 | 0.943 |
SROCC | 0.940 | 0.928 | 0.914 | 0.919 | 0.932 | 0.965 | 0.920 | 0.938 | 0.914 | 0.931 | 0.909 | |
Gblur | PLCC | 0.920 | 0.948 | 0.617 | 0.917 | 0.971 | 0.974 | 0.904 | 0.923 | 0.919 | 0.899 | 0.976 |
SROCC | 0.882 | 0.935 | 0.555 | 0.878 | 0.857 | 0.855 | 0.873 | 0.871 | 0.932 | 0.833 | 0.903 |
Stereo Method | Pearson’s Linear Correlation Coefficient (PLCC) | Spearman’s Rank Order Correlation Coefficient (SROCC) |
---|---|---|
Ground Truth | 0.927 | 0.891 |
SAD | 0.921 | 0.883 |
Klaus | 0.925 | 0.887 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhou, W. Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Appl. Sci. 2019, 9, 3906. https://doi.org/10.3390/app9183906
Huang S, Zhou W. Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Applied Sciences. 2019; 9(18):3906. https://doi.org/10.3390/app9183906
Chicago/Turabian StyleHuang, Siyuan, and Wujie Zhou. 2019. "Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response" Applied Sciences 9, no. 18: 3906. https://doi.org/10.3390/app9183906
APA StyleHuang, S., & Zhou, W. (2019). Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Applied Sciences, 9(18), 3906. https://doi.org/10.3390/app9183906