A Metasurfaces Review: Definitions and Applications
Abstract
1. Overview
2. Metamaterials
3. Metasurfaces
3.1. Definition and Salient Characteristics of Metasurfaces
3.2. Phase Jumps and Generalized Law of Refraction
3.3. Applications of Metasurfaces
3.4. Wavefront Control/Shaping Using Metasurfaces
3.5. Metasurface Lenses
3.6. Non-Linear Metasurfaces
4. Frequency Selective Surfaces Based on Metasurfaces
5. Metasurface Antennas
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Pendry, J.B. Metamaterials and the Control of Electromagnetic Fields. In Proceedings of the Conference on Coherence and Quantum Optics 2007, Rochester, NY, USA, 10–13 June 2007; pp. 1–11. [Google Scholar]
- Caloz, C.; Okabe, H.; Iwai, T.; Itoh, T. Transmission line approach of left-handed materials. In Proceedings of the IEEE AP-S International Symposium and USNC/URSINational Radio Science Meeting, San Antonio, TX, USA, 16 June 2002; p. 39. [Google Scholar]
- Lindell, I.V.; Tretyakov, S.A.; Nikoskinen, K.I.; Ilvonen, S. BW media? Media with negative parameters, capable of supporting backward waves. Microw. Opt. Technol. Lett. 2001, 31, 129–133. [Google Scholar] [CrossRef]
- Ziolkowski, R.W.; Heyman, E. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 2001, 64, 056625. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, T. Lorentz Dispersion Model. 1878. Available online: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf (accessed on 13 February 2019).
- Engheta, N.; Ziolkowski, R. Metamaterials: Physics and Engineering Explaorations; Wiley-IEEE Press: Piscataway, NJ, USA, 2006. [Google Scholar]
- Engheta, N. Ideas for potential applications of metamaterials with negative permittivity and permeability. In Advances in Electromagnetics of Complex Media and Metamaterials; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Engheta, N. An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials with Negative Permittivity and Permeability. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 10–13. [Google Scholar] [CrossRef]
- Engheta, N.; Ziolkowski, R.W. A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 2005, 53, 1535–1556. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Guided Modes in a Waveguide Filled with a Pair of SNG, DNG and/or DPS Layers. IEEE Trans. Microw. Theory Tech. 2004, 52, 199–210. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Veselago, V.G. The Electrodynamics of substances with simultaneously negative values of ϵ and μ. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Kuester, E.; Mohamed, M.; Piket-May, M.; Holloway, C. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans. Antennas Propag. 2003, 51, 2641–2651. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V.M. Optical Metamaterials: Fundamentals and Applications; Springer: Berlin, Germany, 2009. [Google Scholar]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, I.; Rho, J. Microelectronic engineering challenges in fabrication towards realization of practical metamaterials. Microelectron. Eng. 2016, 163, 7–20. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photon. 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar Photonics with Metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.H.; Yun, S.; Lin, L.; Bossard, J.A.; Werner, D.H.; Mayer, T.S. Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions. Sci. Rep. 2013, 3, 1571. [Google Scholar] [CrossRef] [PubMed]
- Albooyeh, M.; Simovski, C.; Tretyakov, S. Homogenization and characterization of metasurfaces: General framework. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–3. [Google Scholar]
- Holloway, C.L.; Kuester, E.F. A Homogenization Technique for Obtaining Generalized Sheet-Transition Conditions for a Metafilm Embedded in a Magnetodielectric Interface. IEEE Trans. Antennas Propag. 2016, 64, 4671–4686. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Systematic Design of THz Leaky-Wave Antennas Based on Homogenized Metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 1169–1178. [Google Scholar] [CrossRef]
- Moeini, S. Homogenization of Fractal Metasurface Based on Extension of Babinet-Booker’s Principle. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1061–1065. [Google Scholar] [CrossRef]
- Achouri, K.; Bernasconi, G.D.; Butet, J.; Martin, O.J.F. Homogenization and Scattering Analysis of Second-Order Nonlinear Metasurfaces. In Proceedings of the 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Espoo, Finland, 27 August–1 September 2018; Volume 66, pp. 10–12. [Google Scholar]
- Carrasco, E.; Encinar, J.A. Reflectarray antennas: A review. Forum Electromagn. Res. Methods Appl. Technol. 2016. [Google Scholar]
- Cho, Y.H.; Byun, W.J.; Song, M.S. Metallic-Rectangular-Grooves Based 2D Reflectarray Antenna Excited by an Open-Ended Parallel-Plate Waveguide. IEEE Trans. Antennas Propag. 2010, 58, 1788–1792. [Google Scholar]
- Encinar, J.; Zornoza, J. Broadband design of three-layer printed reflectarrays. IEEE Trans. Antennas Propag. 2003, 51, 1662–1664. [Google Scholar] [CrossRef]
- Huang, J.; Pogorzelski, R. A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Trans. Antennas Propag. 1998, 46, 650–656. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Huygens, C. Traite’ de la Lumie’re (A Treatise on light); Pieter van der Aa: Leyden, The Netherlands, 1690. [Google Scholar]
- Rengarajan, S.; Rahmat-Samii, Y. The field equivalence principle: Illustration of the establishment of the non-intuitive null fields. IEEE Antennas Propag. Mag. 2000, 42, 122–128. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Monticone, F.; Estakhri, N.M.; Alù, A. Full Control of Nanoscale Optical Transmission with a Composite Metascreen. Phys. Rev. Lett. 2013, 110, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kats, M.A.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M.M.; Basov, D.N.; Ramanathan, S.; Capasso, F. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 2012, 101, 221101. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2012, 12, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Cornbleet, S. Geometrical Optics Reviewed: A new light on an old subject. Proc. IEEE 1983, 71, 471–502. [Google Scholar] [CrossRef]
- Cathey, J.W. Three-Dimensional Wavefront Reconstruction Using a Phase Hologram. J. Opt. Soc. Am. 1965, 1295, 457. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, L.; Yang, J.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T.; Jin, B.; Liu, W. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution. Sci. Rep. 2016, 6, 26875. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.; Leighton, R.; Sands, M. The Feynman lectrures on physics I. Am. J. Phys. 1965, 33, 750–752. [Google Scholar] [CrossRef]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband Light Bending with Plasmonic Nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, D.T. Planar Three-Dimensional Constrained Lenses. IEEE Trans. Antennas Propag. 1986, 34, 46–50. [Google Scholar] [CrossRef]
- Pozar, D.M.; Targonski, S.D.; Syrigos, H.D. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 1997, 45, 287–296. [Google Scholar] [CrossRef]
- Yu, A.; Yang, F.; Elsherbeni, A.; Huang, J. Experimental demonstration of a single layer tri-band circularly polarized reflectarray. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Pozar, D.M. Flat lens antenna concept using aperture coupled microstrip patches. Electron. Lett. 1996, 32, 2109–2111. [Google Scholar] [CrossRef]
- Pozar, D.M. Wideband reflectarrays using artificial impedance surfaces. Electron. Lett. 2007, 43, 148. [Google Scholar] [CrossRef]
- Niemi, T.; Karilainen, A.O.; Tretyakov, S.A. Synthesis of Polarization Transformers. IEEE Trans. Antennas Propag. 2013, 61, 3102–3111. [Google Scholar] [CrossRef]
- Ginn, J.; Lail, B.; Alda, J.; Boreman, G. Planar infrared binary phase reflectarray. Opt. Lett. 2008, 33, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Farmahini-Farahani, M.; Mosallaei, H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt. Lett. 2013, 38, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Withayachumnankul, W.; Upadhyay, A.; Gutruf, P.; Abbott, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Terahertz reflectarray as a polarizing beam splitter. Opt. Express 2014, 22, 16148–16160. [Google Scholar] [CrossRef] [PubMed]
- Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M. Matter’s Electromagnetic Signature Reproduction by Graded-Dielectric Multilayer Assembly. IEEE Trans. Microw. Theory Tech. 2017, 65, 2801–2809. [Google Scholar] [CrossRef]
- Bellucci, S.; Bolesta, I.; Guidi, M.C.; Karbovnyk, I.; Lesivciv, V.; Micciulla, F.; Pastore, R.; Popov, A.I.; Velgosh, S. Cadmium clusters in CdI2layered crystals: The influence on the optical properties. J. Phys. Condens. Matter 2007, 19, 395015. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed]
- Pors, A.; Nielsen, M.G.; Eriksen, R.L.; Bozhevolnyi, S.I. Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces. Nano Lett. 2013, 13, 829–834. [Google Scholar] [CrossRef]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Lapine, M.; Shadrivov, I.V.; Kivshar, Y.S. Colloquium: Nonlinear metamaterials. Rev. Mod. Phys. 2014, 86, 1093–1123. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Wu, Z.; Zhu, Y. Wave propagation in two-dimensional left-handed non-linear transmission line metamaterials. IET Microw. Antennas Propag. 2016, 10, 202–207. [Google Scholar] [CrossRef]
- Kim, E.; Wang, F.; Wu, W.; Yu, Z.; Shen, Y.R. Nonlinear optical spectroscopy of photonic metamaterials. Phys. Rev. B 2008, 78, 2–5. [Google Scholar] [CrossRef]
- Vardaxoglou, J.C. Frequency Selective Surfaces: Analysis and Design; Research Studies Press: Boston, MA, USA, 1997. [Google Scholar]
- Lee, S.-W. Scattering by dielectric-loaded screen. IRE Trans. Antennas Propag. 1971, 19, 656–665. [Google Scholar]
- Chiu, C.-N.; Chang, K.-P. A Novel Miniaturized-Element Frequency Selective Surface Having a Stable Resonance. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1175–1177. [Google Scholar] [CrossRef]
- Sarabandi, K.; Behdad, N. A Frequency Selective Surface with Miniaturized Elements. IEEE Trans. Antennas Propag. 2007, 55, 1239–1245. [Google Scholar] [CrossRef]
- Xu, R.-R.; Zong, Z.-Y.; Wu, W. Low-frequency miniaturized dual-band frequency selective surfaces with close band spacing. Microw. Opt. Technol. Lett. 2009, 51, 1238–1240. [Google Scholar] [CrossRef]
- Bayatpur, F.; Sarabandi, K. A Tunable Metamaterial Frequency-Selective Surface with Variable Modes of Operation. IEEE Trans. Microw. Theory Tech. 2009, 57, 1433–1438. [Google Scholar] [CrossRef]
- Sanz-Izquierdo, B.; Parker, E.A.; Robertson, J.-B.; Batchelor, J.C. Singly and Dual Polarized Convoluted Frequency Selective Structures. IEEE Trans. Antennas Propag. 2010, 58, 690–696. [Google Scholar] [CrossRef]
- Pendry, J.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marques, R.; Martin, F.; Sorolla, M. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef]
- Ra, Y.; Asadchy, V.S.; Tretyakov, S.A. One-way transparent sheets. Phys. Rev. B 2014, 89, 075109. [Google Scholar]
- Sanz-Izquierdo, B.; Parker, E.A.; Batchelor, J. Dual-Band Tunable Screen Using Complementary Split Ring Resonators. IEEE Trans. Antennas Propag. 2010, 58, 3761–3765. [Google Scholar] [CrossRef]
- Turpin, J.P.; Bossard, J.A.; Morgan, K.L.; Werner, D.H.; Werner, P.L. Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications. Int. J. Antennas Propag. 2014, 2014, 429837. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, J.; Ma, H.; Du, H.; Zhang, J.; Qu, S.; Xu, Z. Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics. Sci. Rep. 2016, 6, 24178. [Google Scholar] [CrossRef] [PubMed]
- Debogovi, T.; Bartolic, J.; Perruisseau-Carrier, J. Dual-Polarized Partially Refl ective Surface Antenna with MEMS-Based Beamwidth Reconfiguratio. IEEE Trans. Antennas Propag. 2014, 62, 228–236. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Schaffner, J.; Tangonan, G.; Ontiveros, S.; Harold, R.; Loo, R. A tunable impedance surface performing as a reconfigurable beam steering reflector. IEEE Trans. Antennas Propag. 2002, 50, 384–390. [Google Scholar] [CrossRef]
- Bakanowski, A.E.; Cranna, N.G.; Uhlir, J.A. Diffused Silicon Nonlinear Capacitors. IRE Trans. Electron Devices 1958, 17, 384–390. [Google Scholar]
- Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G. Two-Dimensional Beam Steering Using an Electrically Tunable Impedance Surface. IEEE Trans. Antennas Propag. 2003, 51, 2713–2722. [Google Scholar] [CrossRef]
- Bayatpur, F.; Sarabandi, K. Design and Analysis of a Tunable Miniaturized-Element Frequency-Selective Surface Without Bias Network. IEEE Trans. Antennas Propag. 2010, 58, 1214–1219. [Google Scholar] [CrossRef]
- Chen, H.-T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef]
- Antonopoulos, C.; Cahill, R.; Parker, E.; Sturland, I. Multilayer frequency-selective surfaces for millimetre and submillimetre wave applications. IEE Proc. Microw. Antennas Propag. 1997, 144, 415. [Google Scholar] [CrossRef]
- Bayatpur, F.; Sarabandi, K. Single-Layer High-Order Miniaturized-Element. IEEE Trans. Microw. Theory Tech. 2008, 56, 774–781. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Q.; Wu, C.; Talbi, L. Wideband Fabry-Perot Resonator Antenna With Two Complementary FSS Layers. IEEE Trans. Antennas Propag. 2014, 62, 2463–2471. [Google Scholar]
- Monorchio, A.; Manara, G.; Lanuzza, L. Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 196–199. [Google Scholar] [CrossRef]
- Wan, X.; Jia, S.L.; Cui, T.J.; Zhao, Y.J. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces. Sci. Rep. 2016, 6, 25639. [Google Scholar] [CrossRef] [PubMed]
- Minatti, G.; Caminita, F.; Casaletti, M.; Maci, S. Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 2011, 59, 4436–4444. [Google Scholar] [CrossRef]
- Gregoire, D.J. 3-D Conformal Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 233–236. [Google Scholar] [CrossRef]
- Nannetti, M.; Caminita, F.; Maci, S. Leaky-wave based interpretation of the radiation from holographic surfaces. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 5813–5816. [Google Scholar]
- Minatti, G.; Faenzi, M.; Martini, E.; Caminita, F.; De Vita, P.; Ovejero, D.G.; Sabbadini, M.; Maci, S. Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations. IEEE Trans. Antennas Propag. 2015, 63, 1288–1300. [Google Scholar] [CrossRef]
- Pereda, A.T.; Caminita, F.; Martini, E.; Ederra, I.; Iriarte, J.C.; Gonzalo, R.; Maci, S.; Tellechea, A. Dual Circularly-Polarized Broadside Beam Metasurface Antenna. IEEE Trans. Antennas Propag. 2016, 64, 2944–2953. [Google Scholar] [CrossRef]
- Minatti, G.; Faenzi, M.; Sabbadini, M.; Maci, S. Bandwidth of Gain in Metasurface Antennas. IEEE Trans. Antennas Propag. 2017, 65, 2836–2842. [Google Scholar] [CrossRef]
- González-ovejero, D.; Member, S.; Minatti, G.; Chattopadhyay, G.; Maci, S. Multibeam by Metasurface Antennas. IEEE Trans. Antennas Propag. 2017, 65, 2923–2930. [Google Scholar] [CrossRef]
- Abdo-Sanchez, E.; Chen, M.; Epstein, A.; Eleftheriades, G.V. A Leaky-Wave Antenna with Controlled Radiation Using a Bianisotropic Huygens’ Metasurface. IEEE Trans. Antennas Propag. 2019, 67, 108–120. [Google Scholar] [CrossRef]
- Epstein, A.; Eleftheriades, G.V. Arbitrary Power-Conserving Field Transformations with Passive Lossless Omega-Type Bianisotropic Metasurfaces. IEEE Trans. Antennas Propag. 2016, 64, 3880–3895. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.P.; Hall, P.S. Broadband Sub-Wavelength Profile High-Gain Antennas Based on Multi-Layer Metasurfaces. IEEE Trans. Antennas Propag. 2015, 63, 423–427. [Google Scholar] [CrossRef]
- Epstein, A.; Eleftheriades, G.V. Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation. IEEE Trans. Antennas Propag. 2014, 62, 5680–5695. [Google Scholar] [CrossRef]
- Epstein, A.; Wong, J.P.S.; Eleftheriades, G.V. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.S.; Whittow, W.G.; Vardaxoglou, J.C.; Maci, S.; Whittow, W.; Vardaxoglou, J.Y. Equivalent Circuit Model for Coupled Complementary Metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 5308–5317. [Google Scholar] [CrossRef]
- Ovejero, D.G.; Martini, E.; Loiseaux, B.; Tripon-Canseliet, C.; Mencagli, M.J.; Chazelas, J.; Maci, S. Basic Properties of Checkerboard Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 406–409. [Google Scholar] [CrossRef]
- Wu, Q.; Scarborough, C.P.; Werner, D.H.; Lier, E.; Wang, X. Design Synthesis of Metasurfaces for Broadband Hybrid-Mode Horn Antennas with Enhanced Radiation Pattern and Polarization Characteristics. IEEE Trans. Antennas Propag. 2012, 60, 3594–3604. [Google Scholar] [CrossRef]
- Scarborough, C.P.; Martin, B.G.; Shaw, R.K.; Werner, D.H.; Lier, E.; Wang, X.; Wu, Q. A Ku-Band Dual Polarization Hybrid-Mode Horn Antenna Enabled by Printed-Circuit-Board Metasurfaces. IEEE Trans. Antennas Propag. 2013, 61, 1089–1098. [Google Scholar]
- Jiang, Z.H.; Brocker, D.E.; Sieber, P.E.; Werner, D.H. A Compact, Low-Profile Metasurface-Enabled Network Devices. IEEE Trans. Antennas Propag. 2014, 62, 4021–4030. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Ma, X.; Luo, X. Wideband Radar Cross Section Reduction of a Stacked Patch Array Antenna Using Metasurface. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1369–1372. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhari, S.S.; Vardaxoglou, J.; Whittow, W. A Metasurfaces Review: Definitions and Applications. Appl. Sci. 2019, 9, 2727. https://doi.org/10.3390/app9132727
Bukhari SS, Vardaxoglou J, Whittow W. A Metasurfaces Review: Definitions and Applications. Applied Sciences. 2019; 9(13):2727. https://doi.org/10.3390/app9132727
Chicago/Turabian StyleBukhari, Syed S., J (Yiannis) Vardaxoglou, and William Whittow. 2019. "A Metasurfaces Review: Definitions and Applications" Applied Sciences 9, no. 13: 2727. https://doi.org/10.3390/app9132727
APA StyleBukhari, S. S., Vardaxoglou, J., & Whittow, W. (2019). A Metasurfaces Review: Definitions and Applications. Applied Sciences, 9(13), 2727. https://doi.org/10.3390/app9132727