A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications
Abstract
:1. Introduction
2. Overview of ASK-OFDM
3. Fractional Fourier Transform (FrFT)
4. Underwater Acoustic Channel Model
4.1. Path Loss
4.2. Fading
4.3. Noise Model
5. System Model
Spectral Efficiency and Data Rate
6. Numerical Results
7. Conclusions and Future Work
Author Contributions
Conflicts of Interest
References
- Al-Dharrab, S.; Uysal, M.; Duman, T.M. Cooperative Underwater Acoustic Communications [Accepted From Open Call]. IEEE Commun. Mag. 2013, 51, 146–153. [Google Scholar] [CrossRef]
- Rehan, K.; Qiao, G. A Survey of Underwater Acoustic Communication and Networking Techniques. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 1778–1789. [Google Scholar]
- Paul, J.; Gendron, Z.H.M. Shallow Water Acoustic Response and Platform Motion Modeling via a Hierarchical Gaussian Mixture Model. J. Acoust. Soc. Am. 2016, 139, 1923–1937. [Google Scholar] [CrossRef]
- Che, X.; Wells, I.; Dickers, G.; Kear, P.; Gong, X. Re-Evaluation of RF Electromagnetic Communication in Underwater Sensor Networks. IEEE Commun. Mag. 2010, 48, 143–151. [Google Scholar] [CrossRef]
- Xiong, F. M-ary Amplitude Shift Keying OFDM System. IEEE Trans. Commun. 2003, 51, 1638–1642. [Google Scholar] [CrossRef]
- Nasr, M.A.; Shaban, H.A.; Mangoud, M.A. Coded 4-PAM OFDM for High Rate Data Links. In Innovations and Advanced Techniques in Computer and Information Sciences and Engineering; Sobh, T., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 553–556. [Google Scholar]
- Shaban, H.; Khedr, M.; Hamed, K. M-Ary Amplitude Shift Keying-Orthogonal Frequency Division Multiplexing for High Data-Rate Wireless Communications Over Rayleigh Fading Channels in Presence of Carrier Frequency Offset. Adv. Sci. Lett. 2014, 20, 418–421. [Google Scholar] [CrossRef]
- Clemente, M.C.; Paris, J.F. Closed-Form Statistics for Sum of Squared Rician Shadowed Variates and its Application. Electron. Lett. 2014, 50, 120–121. [Google Scholar] [CrossRef]
- Radosevic, A.; Proakis, J.G.; Stojanovic, M. Statistical Characterization and Capacity of Shallow Water Acoustic channels. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–8. [Google Scholar]
- Stojanovic, M.; Preisig, J. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Bejjani, E.; Belfiore, J.C. Multicarrier Coherent Communications for the Underwater Acoustic Channel. In Proceedings of the Prospects for the 21st Century OCEANS’96 Conference, Fort Lauderdale, FL, USA, 23–26 September 1996; Volume 3, pp. 1125–1130. [Google Scholar]
- Lam, W.K.; Ormondroyd, R.F. A Coherent COFDM Modulation System for a Time-Varying Frequency-Selective Underwater Acoustic Channel. In Proceedings of the Seventh International Conference on Electronic Engineering in Oceanography—Technology Transfer from Research to Industry, Southampton, UK, 23–25 June 1997; pp. 198–203. [Google Scholar]
- Kim, B.C.; Lu, I.T. Parameter Study of OFDM Underwater Communications System. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, RI, USA, 11–14 September 2000; Volume 2, pp. 1251–1255. [Google Scholar]
- Kang, T.; Iltis, R.A. Iterative Carrier Frequency Offset and Channel Estimation for Underwater Acoustic OFDM Systems. IEEE J. Sel. Areas Commun. 2008, 26, 1650–1661. [Google Scholar] [CrossRef]
- Stojanovic, M. OFDM for Underwater Acoustic Communications: Adaptive Synchronization and Sparse Channel Estimation. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 5288–5291. [Google Scholar]
- Kuai, X.; Sun, H.; Zhou, S.; Cheng, E. Impulsive Noise Mitigation in Underwater Acoustic OFDM Systems. IEEE Trans. Veh. Technol. 2016, 65, 8190–8202. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Zhou, S.; Ball, K.; Stojanovic, M.; Freitag, L.; Willett, P. MIMO-OFDM for High-Rate Underwater Acoustic Communications. IEEE J. Ocean. Eng. 2009, 34, 634–644. [Google Scholar] [CrossRef]
- Li, B.; Zhou, S.; Huang, J.; Willett, P. Scalable OFDM Design for Underwater Acoustic Communications. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 5304–5307. [Google Scholar]
- Songzuo, L.; Lu, M.; Hui, L.; Tingting, C.; Gang, Q. Design and Implementation of OFDM Underwater Acoustic Communication Algorithm Based on OMAP-L138. In Proceedings of the Proceedings of the International Conference on Underwater Networks & Systems, Rome, Italy, 12–14 November 2014; pp. 12:1–12:5. [Google Scholar]
- Kumari, S.; Rai, S.K.; Kumar, A.; Joshi, H.D.; Singh, A.K.; Saxena, R. Exact BER Analysis of FRFT-OFDM System Over Frequency Selective Rayleigh Fading Channel with CFO. Electron. Lett. 2013, 49, 1299–1301. [Google Scholar] [CrossRef]
- Chen, Y.; Clemente, C.; Soraghan, J.; Weiss, S. Fractional Fourier Based Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication System. In Proceedings of the 2016 Sensor Signal Processing for Defence (SSPD), Edinburgh, UK, 22–23 September 2016; pp. 1–5. [Google Scholar]
- Chen, Y.; Clamente, C.; Soraghan, J.; Weiss, S. Fractional Cosine Transform (FRCT)-Turbo Based OFDM for Underwater Acoustic Communication. In Proceedings of the Sensor Signal Processing for Defence (SSPD), Edinburgh, UK, 9–10 September 2015; pp. 1–5. [Google Scholar]
- Chen, Y.; Clemente, C.; Soraghan, J.J.; Weiss, S. Partial Fractional Fourier Transform (PFRFT)-OFDM for Underwater Acoustic Communication. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 364–368. [Google Scholar]
- Chen, Y.; Cai, P.; Wang, Y. A New Underwater Acoustic Communication System Based on Fractional Fourier Transform. In Proceedings of the 2010 IEEE International Conference on Information and Automation (ICIA), Harbin, China, 20–23 July 2010; pp. 413–418. [Google Scholar]
- Zhu, Z.; Chen, Y.; Cai, P. A Novel Underwater Acoustic FRFT-OFDM Communication System with VTRM Technology. Int. J. Adv. Comput. Technol. 2012, 4, 82–92. [Google Scholar] [CrossRef]
- Ashri, R.M.; Shaban, H.A.; El-Nasr, M.A. BER of FRFT-Based OFDM System for Underwater Wireless Communication. In Proceedings of the 2016 33rd National Radio Science Conference (NRSC), Aswan, Egypt, 22–25 February 2016; pp. 266–273. [Google Scholar]
- Martone, M. A Multicarrier System Based on the Fractional Fourier Transform for Time-Frequency-Selective Channels. IEEE Trans. Commun. 2001, 49, 1011–1020. [Google Scholar] [CrossRef]
- Chen, E.; Tao, R.; Meng, X. The OFDM System Based on the Fractional Fourier Transform. In Proceedings of the First International Conference on Innovative Computing, Information and Control, Beijing, China, 30 August–1 September 2006; Volume 3, pp. 14–17. [Google Scholar]
- Chen, Y.; Cai, P.; Wang, Y. Research on FRFT-PPM Underwater Acoustic Communication System. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing (CISP), Yantai, China, 16–18 October 2010; Volume 9, pp. 4427–4431. [Google Scholar]
- Chen, X.; Guan, J.; He, Y.; Zhang, J. Detection of Low Observable Moving Target in Sea Clutter via Fractal Characteristics in Fractional Fourier Transform Domain. IET Radar Sonar Navig. 2013, 7, 635–651. [Google Scholar] [CrossRef]
- Candan, C.; Kutay, M.A.; Ozaktas, H.M. The Discrete Fractional Fourier Transform. IEEE Trans. Signal Process. 2000, 48, 1329–1337. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Arikan, O.; Kutay, M.A.; Bozdagt, G. Digital Computation of The Fractional Fourier Transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.C.; Ding, J.J. Closed-Form Discrete Fractional and Affine Fourier Transforms. IEEE Trans. Signal Process. 2000, 48, 1338–1353. [Google Scholar] [CrossRef]
- Santhanam, B.; McClellan, J.H. The Discrete Rotational Fourier Transform. IEEE Trans. Signal Process. 1996, 44, 994–998. [Google Scholar] [CrossRef]
- Zhao, A.; Zeng, C.; Hui, J.; Ma, L.; Bi, X. Experimental Demonstration of Long-Range Underwater Acoustic Communication Using a Vertical Sensor Array. Sensors 2017, 17, 1516. [Google Scholar] [CrossRef] [PubMed]
- Walree, P.V.; Otnes, R.; Jenserud, T. Watermark: A Realistic Benchmark for Underwater Acoustic Modems. In Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1 September 2016; pp. 1–4. [Google Scholar]
QPSK | 16-QAM | 4-ASK | 16-ASK | |
---|---|---|---|---|
SNR = 10 dB | 0.021 | 0.039 | 0.039 | 0.094 |
SNR = 17 dB | 0.006 | 0.013 | 0.013 | 0.037 |
SnR = 25 dB | 0.001 | 0.004 | 0.004 | 0.016 |
QPSK | 16-QAM | 4-ASK | 16-ASK | |
---|---|---|---|---|
Long range | 5.07 kbps | 10.14 kbps | 10.12 kbps | 20.24 kbps |
Medium range | 10.14 kbps | 20.28 kbps | 20.24 kbps | 40.48 kbps |
Short range | 50.7 kbps | 101.41 kbps | 101.2 kbps | 202.425 kbps |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashri, R.; Shaban, H.; El-Nasr, M.A. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications. Appl. Sci. 2017, 7, 1286. https://doi.org/10.3390/app7121286
Ashri R, Shaban H, El-Nasr MA. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications. Applied Sciences. 2017; 7(12):1286. https://doi.org/10.3390/app7121286
Chicago/Turabian StyleAshri, Rami, Heba Shaban, and Mohamad Abou El-Nasr. 2017. "A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications" Applied Sciences 7, no. 12: 1286. https://doi.org/10.3390/app7121286
APA StyleAshri, R., Shaban, H., & El-Nasr, M. A. (2017). A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications. Applied Sciences, 7(12), 1286. https://doi.org/10.3390/app7121286