Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology
Abstract
1. Introduction
2. Principle
2.1. Light Path Construction
2.2. Simulation Verification
3. Discussion and Results
3.1. Simulation
3.2. Laser Wavelength Tuning Experiment
3.3. Impact Loading Experiment of Three-Stage Light Gas Gun
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weng, J.; Tan, H.; Wang, X.; Ma, Y.; Hu, S.; Wang, X. Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl. Phys. Lett. 2006, 89, 111101. [Google Scholar] [CrossRef]
- Weng, J.; Wang, X.; Ma, Y.; Tan, H.; Cai, L.; Li, J.; Liu, C. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser. Rev. Sci. Instrum. 2008, 79, 113101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Yu, Y.Y.; Li, Y.H.; Zhang, L.; Weng, J.D. Window Corrections of Z-cut Quartz at 1550 Nm Under Elastic, Uniaxial Compression up to 10 GPa. J. Appl. Phys. 2011, 109, 103518. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.W.; Tan, Y.; He, R.Z.; Huang, J.; Ma, Y.C.; Li, J.; Weng, J.D.; Jin, K. Single femtosecond laser beam pumped transient diffraction and transient lens effects for ultrafast measurement in background-free geometry. Opt. Laser. Technol. 2017, 92, 189–192. [Google Scholar] [CrossRef]
- Khaustov, S.V.; Pai, V.V.; Lukyanov, Y.L.; Lysak, V.I.; Kuz’min, S.V. Thermal effect of explosive detonation products on a flyer plate in the explosive welding of metals. Int. J. Heat. Mass. Tran. 2020, 163, 120469. [Google Scholar] [CrossRef]
- Dolan, D.H. Extreme measurements with Photonic Doppler Velocimetry (PDV). Rev. Sci. Instrum. 2020, 91, 051501. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, S.; Grace, D.; Bless, S.; Iskander, M.; Omidvar, M. Frequency-shifted photonic Doppler velocimetry (PDV) for measuring deceleration of projectiles in soils. Acta. Geotech. 2024, 19, 2467–2485. [Google Scholar] [CrossRef]
- Dolan, D.H. Technology and times scales in Photonic Doppler Velocimetry (PDV). Meas. Sci. Technol. 2024, 35, 061001. [Google Scholar] [CrossRef]
- Jensen, B.J.; Holtkamp, D.B.; Rigg, P.A.; Dolan, D.H. Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys. 2007, 101, 013523. [Google Scholar] [CrossRef]
- Gallegos, C.H.; Marshall, B.; Teel, M.; Romero, V.T.; Diaz, A.; Berninger, M. Comparison of Triature Doppler Velocimetry and Visar. J. Phys. Conf. Ser. 2010, 244, 032045. [Google Scholar] [CrossRef]
- Dolan, D.H.; Lemke, R.W.; McBride, R.D.; Martin, M.R.; Harding, E.; Dalton, D.G.; Blue, B.E.; Walker, S.S. Tracking an imploding cylinder with photonic Doppler velocimetry. Rev. Sci. Instrum. 2013, 84, 055102. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.; Hammer, J.; Okoth, C.; Ortiz-Ricardo, E.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A.B.; Frosz, M.H.; Jiang, X. Progress toward third-order parametric down-conversion in optical fibers. Phys. Rev. A. 2020, 101, 033840. [Google Scholar] [CrossRef]
- Dolan, D.H.; Ao, T.; Hernandez, O. Note: Frequency-conversion photonic Doppler velocimetry with an inverted circulator. Rev. Sci. Instrum. 2012, 83, 026109. [Google Scholar] [CrossRef] [PubMed]
- Mance, J.G.; La Lone, B.M.; Dolan, D.H.; Payne, S.L.; Ramsey, D.L.; Veeser, L.R. Time-stretched photonic Doppler velocimetry. Opt. Express. 2019, 27, 25022–25030. [Google Scholar] [CrossRef] [PubMed]
- Kilic, V.; DiMarco, C.S.; Foster, M.A. Time Lens Photon Doppler Velocimetry (TL-PDV) for extreme measurements. Nat. Commun. 2024, 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, W.P. Precision and Accuracy in PDV and VISAR; Lawrence Livermore National Laboratory: San Francisco, CA, USA, 2017; LLNL-TR-737609. [Google Scholar]
- Bogdanoff, W.D. Design of a Two-Stage Light Gas Gun for Muzzle Velocities of 10–11 km/s. In Proceedings of the 67th Meeting of the Aeroballistic Range Association, Toledo, Spain, 3–6 October 2016. [Google Scholar]
- Thornhilla, T.F.; Chhabildasb, L.C.; Reinhartb, W.D. Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. Int. J. Impact Eng. 2006, 33, 799–811. [Google Scholar] [CrossRef]
- Fan, Z.N.; Akram, M.S.; Liu, F.S.; Liu, Q.J. Shock temperature of liquid nitrogen under pressure using a combination of multi-channel pyrometer and Doppler pin system. Phys. Lett. A 2024, 519, 129700. [Google Scholar]
Name | Wavelength/nm | Line Width/kHz | Power/mW | Relative Intensity Noise/dB/Hz |
---|---|---|---|---|
Main Laser | 1550.192 | 100 | 500 | −130 |
Reference Laser 1 | 1550.128 | 100 | 50 | −130 |
Reference Laser 2 | 1550.000 | 100 | 50 | −130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Chen, L.; Gu, W.; Liu, C.; Tang, L.; Jia, X.; Tao, T.; Liu, S.; Chen, Y.; Wang, X.; et al. Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Appl. Sci. 2024, 14, 10771. https://doi.org/10.3390/app142310771
Ma H, Chen L, Gu W, Liu C, Tang L, Jia X, Tao T, Liu S, Chen Y, Wang X, et al. Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Applied Sciences. 2024; 14(23):10771. https://doi.org/10.3390/app142310771
Chicago/Turabian StyleMa, Heli, Long Chen, Wei Gu, Cangli Liu, Longhuang Tang, Xing Jia, Tianjiong Tao, Shenggang Liu, Yongchao Chen, Xiang Wang, and et al. 2024. "Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology" Applied Sciences 14, no. 23: 10771. https://doi.org/10.3390/app142310771
APA StyleMa, H., Chen, L., Gu, W., Liu, C., Tang, L., Jia, X., Tao, T., Liu, S., Chen, Y., Wang, X., Wu, J., Li, C., Liu, D., Weng, J., & Liu, H. (2024). Measurement of Ultra-High Speed by Optical Multistage Cascade Frequency Reduction Technology. Applied Sciences, 14(23), 10771. https://doi.org/10.3390/app142310771