Using Video-Fluoroscopy and Multibody Modelling to Unveil the Influence of a Gradually Reducing Femoral Radius on Ligament Elongation Patterns Following Posterior Cruciate-Retaining Total Knee Arthroplasty
Abstract
1. Introduction
2. Methods
2.1. Subjects
2.2. Kinematics
2.3. TKA Modelling
2.4. Statistical Analysis
3. Results
3.1. Validation of the Scaling Technique
3.2. Reference Lengths
3.3. Level Gait
3.4. Sit-to-Stand-to-Sit Activity
3.5. Stair Descent
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SIRIS Report 2019; Swiss National Joint Registry: Thun, Switzerland, 2019; p. 85.
- National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (Ed.) 16th Annual Report 2019; National Joint Registry for England, Wales, Northern Ireland and the Isle of Man: Herdfordshire, UK, 2019; p. 246. [Google Scholar]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin. Orthop. Relat. Res. 2010, 468, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Witjes, S.; Gouttebarge, V.; Kuijer, P.P.F.; van Geenen, R.C.; Poolman, R.W.; Kerkhoffs, G.M. Return to sports and physical activity after total and unicondylar knee arthroplasty: A systematic review and meta-analysis. Sports Med. 2016, 46, 269–292. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why Are Total Knee Arthroplasties Failing Today—Has Anything Changed After 10 Years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef]
- Babazadeh, S.; Stoney, J.D.; Lim, K.; Choong, P.F. The relevance of ligament balancing in total knee arthroplasty: How important is it? A systematic review of the literature. Orthop. Rev. 2009, 1, e26. [Google Scholar]
- Varadarajan, K.M.; Harry, R.E.; Johnson, T.; Li, G. Can in vitro systems capture the characteristic differences between the flexion–extension kinematics of the healthy and TKA knee? Med. Eng. Phys. 2009, 31, 899–906. [Google Scholar] [CrossRef]
- Akbari Shandiz, M.; Boulos, P.; Saevarsson, S.K.; Yoo, S.; Miller, S.; Anglin, C. Changes in knee kinematics following total knee arthroplasty. Proc. Inst. Mech. Eng. H 2016, 230, 265–278. [Google Scholar] [CrossRef]
- Yue, B.; Varadarajan, K.M.; Moynihan, A.L.; Liu, F.; Rubash, H.E.; Li, G. Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J. Orthop. Res. 2011, 29, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Angerame, M.R.; Holst, D.C.; Jennings, J.M.; Komistek, R.D.; Dennis, D.A. Total Knee Arthroplasty Kinematics. J. Arthroplast. 2019, 34, 2502–2510. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R. In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin. Orthop. Relat. Res. 2003, 410, 114–130. [Google Scholar] [CrossRef]
- List, R.; Schütz, P.; Angst, M.; Ellenberger, L.; Dätwyler, K.; Ferguson, S.J.; von Eisenhart-Rothe, R.; Schwaller, C. Videofluoroscopic Videofluoroscopic Evaluation of the Influence of a Gradually Reducing Femoral Radius on Joint Kinematics During Daily Activities in Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 3010–3030. [Google Scholar] [CrossRef]
- Clary, C.W.; Fitzpatrick, C.K.; Maletsky, L.P.; Rullkoetter, P.J. The influence of total knee arthroplasty geometry on mid-flexion stability: An experimental and finite element study. J. Biomech. 2013, 46, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Pfitzner, T.; Moewis, P.; Stein, P.; Boeth, H.; Trepczynski, A.; von Roth, P.; Duda, G.N. Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Asai, S.; Sato, A.; Maekawa, M.; Kawashima, H.; Kanzaki, K. Case series report of navigation-based in vivo knee kinematics in total knee arthroplasty with a gradually reducing femoral radius design. Ann. Med. Surg. 2017, 17, 33–37. [Google Scholar] [CrossRef]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R.; Haas, B.D.; Stiehl, J.B. Conventry Award Paper: Multicenter Determination of In Vivo Kinematics After Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2003, 416, 37–57. [Google Scholar] [CrossRef]
- Ng, J.W.G.; Bloch, B.V.; James, P.J. Sagittal radius of curvature, trochlea design and ultracongruent insert in total knee arthroplasty. EFORT Open Rev. 2019, 4, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.K.; Clary, C.W.; Laz, P.J.; Rullkoetter, P.J. Relative contributions of design, alignment, and loading variability in knee replacement mechanics. J. Orthop. Res. 2012, 30, 2015–2024. [Google Scholar] [CrossRef]
- Bellemans, J. Flexion Instability. In Total Knee Arthroplasty: A Guide to Get Better Performance; Bellemans, J., Ries, M.D., Victor, J.M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 96–100. [Google Scholar]
- Hosseini Nasab, S.H.; Smith, C.; Schutz, P.; Postolka, B.; Ferguson, S.; Taylor, W.R.; List, R. Elongation Patterns of the Posterior Cruciate Ligament after Total Knee Arthroplasty. J. Clin. Med. 2020, 9, 2078. [Google Scholar] [CrossRef]
- Pagnano, M.W.; Hanssen, A.D.; Lewallen, D.G.; Stuart, M.J. Flexion Instability After Primary Posterior Cruciate Retaining Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 1998, 356, 39–46. [Google Scholar] [CrossRef]
- Emodi, G.J.; Callaghan, J.J.; Pedersen, D.R.; Brown, T.D. Posterior cruciate ligament function following total knee arthroplasty: The effect of joint line elevation. Iowa Orthop. J. 1999, 19, 82–92. [Google Scholar]
- Cromie, M.J.; Siston, R.A.; Giori, N.J.; Delp, S.L. Posterior cruciate ligament removal contributes to abnormal knee motion during posterior stabilized total knee arthroplasty. J. Orthop. Res. 2008, 26, 1494–1499. [Google Scholar] [CrossRef]
- Zelle, J.; Heesterbeek, P.J.; De Waal Malefijt, M.; Verdonschot, N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med. Eng. Phys. 2010, 32, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.; Shah, D.S.; Taylan, O.; Slane, J.; De Corte, R.; Scheys, L.; Vandenneucker, H. Impact of increasing total knee replacement constraint within a single implant line on coronal stability: An ex vivo investigation. Arch. Orthop. Trauma. Surg. 2023, 143, 2165–2173. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Nasab, S.H.; Smith, C.R.; Schutz, P.; Postolka, B.; List, R.; Taylor, W.R. Elongation Patterns of the Collateral Ligaments After Total Knee Arthroplasty Are Dominated by the Knee Flexion Angle. Front. Bioeng. Biotechnol. 2019, 7, 323. [Google Scholar] [CrossRef]
- Hosseini Nasab, S.H.; Smith, C.R.; Schutz, P.; Damm, P.; Trepczynski, A.; List, R.; Taylor, W.R. Length-Change Patterns of the Collateral Ligaments During Functional Activities After Total Knee Arthroplasty. Ann. Biomed. Eng. 2020, 48, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Qi, W.; Tsai, T.Y.; Liu, Y.; Rubash, H.; Li, G. In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3055–3061. [Google Scholar] [CrossRef]
- Kono, K.; Konda, S.; Yamazaki, T.; Tanaka, S.; Sugamoto, K.; Tomita, T. In vivo length change of ligaments of normal knees during dynamic high flexion. BMC Musculoskelet. Disord. 2020, 21, 552. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Konda, S.; Yamazaki, T.; Tanaka, S.; Sugamoto, K.; Tomita, T. In-vivo elongation of anterior and posterior cruciate ligament in bi-cruciate retaining total knee arthroplasty. J. Orthop. Res. 2018, 36, 3239–3246. [Google Scholar] [CrossRef]
- List, R.; Postolka, B.; Schutz, P.; Hitz, M.; Schwilch, P.; Gerber, H.; Ferguson, S.J.; Taylor, W.R. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent. PLoS ONE 2017, 12, 13. [Google Scholar] [CrossRef]
- Burckhardt, K.; Szekely, G.; Notzli, H.; Hodler, J.; Gerber, C. Submillimeter measurement of cup migration in clinical standard radiographs. IEEE Trans. Med. Imaging 2005, 24, 676–688. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Smith, C.R.; Vignos, M.F.; Lenhart, R.L.; Kaiser, J.; Thelen, D.G. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement. J. Biomech. Eng. 2016, 138, 021017. [Google Scholar] [CrossRef] [PubMed]
- LaPrade, R.F.; Engebretsen, A.H.; Ly, T.V.; Johansen, S.; Wentorf, F.A.; Engebretsen, L. The anatomy of the medial part of the knee. J. Bone Joint Surg. Am. 2007, 89, 2000–2010. [Google Scholar] [CrossRef] [PubMed]
- Logterman, S.L.; Wydra, F.B.; Frank, R.M. Posterior Cruciate Ligament: Anatomy and Biomechanics. Curr. Rev. Musculoskelet. Med. 2018, 11, 510–514. [Google Scholar] [CrossRef]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Region-of-interest analyses of one-dimensional biomechanical trajectories: Bridging 0D and 1D theory, augmenting statistical power. PeerJ 2016, 4, e2652. [Google Scholar] [CrossRef]
- Alhossary, A.; Pataky, T.; Ang, W.T.; Chua, K.S.G.; Kwong, W.H.; Donnelly, C.J. Versatile clinical movement analysis using statistical parametric mapping in MovementRx. Sci. Rep. 2023, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Sole, G.; Pataky, T.; Tengman, E.; Hager, C. Analysis of three-dimensional knee kinematics during stair descent two decades post-ACL rupture—Data revisited using statistical parametric mapping. J. Electromyogr. Kinesiol. 2017, 32, 44–50. [Google Scholar] [CrossRef]
- Hosseini Nasab, S.H.; Smith, C.R.; Postolka, B.; Schutz, P.; List, R.; Taylor, W.R. In Vivo Elongation Patterns of the Collateral Ligaments in Healthy Knees During Functional Activities. J. Bone Joint Surg. Am. 2021, 103, 1620–1627. [Google Scholar] [CrossRef]
- Konig, C.; Matziolis, G.; Sharenkov, A.; Taylor, W.R.; Perka, C.; Duda, G.N.; Heller, M.O. Collateral ligament length change patterns after joint line elevation may not explain midflexion instability following TKA. Med. Eng. Phys. 2011, 33, 1303–1308. [Google Scholar] [CrossRef]
- Ghosh, K.M.; Merican, A.M.; Iranpour, F.; Deehan, D.J.; Amis, A.A. Length-change patterns of the collateral ligaments after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1349–1356. [Google Scholar] [CrossRef]
- Park, K.K.; Hosseini, A.; Tsai, T.Y.; Kwon, Y.M.; Li, G. Elongation of the collateral ligaments after cruciate retaining total knee arthroplasty and the maximum flexion of the knee. J. Biomech. 2015, 48, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Noyes, F.R.; Butler, D.L.; Suntay, W.J. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J. Bone Joint Surg. Am. 1981, 63, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Gollehon, D.L.; Torzilli, P.A.; Warren, R.F. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J. Bone Joint Surg. Am. 1987, 69, 233–242. [Google Scholar] [CrossRef]
- Jeffcote, B.; Noyes, F.R.; Butler, D.L.; Suntay, W.J. The variation in medial and lateral collateral ligament strain and tibiofemoral forces following changes in the flexion and extension gaps in total knee replacement: A laboratory experiment using cadaver knees. The Journal of bone and joint surgery. Br. Vol. 2007, 89, 1528–1533. [Google Scholar] [CrossRef]
- Askari, E.; Andersen, M.S. Effect of Ligament Properties on Nonlinear Dynamics and Wear Prediction of Knee Prostheses. J. Biomech. Eng. 2020, 143, 021014. [Google Scholar] [CrossRef]
- Naudie, D.D.R.; Ammeen, D.J.; Engh, G.A.; Rorabeck, C.H. Wear and Osteolysis Around Total Knee Arthroplasty. JAAOS J. Am. Acad. Orthop. Surg. 2007, 15, 53–64. [Google Scholar] [CrossRef]
- Steinbrück, A.; Woiczinski, M.; Weber, P.; Müller, P.E.; Jansson, V.; Schröder, C. Posterior cruciate ligament balancing in total knee arthroplasty: A numerical study with a dynamic force controlled knee model. BioMedical Eng. OnLine 2014, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Athwal, K.K.; Hunt, N.C.; Davies, A.J.; Deehan, D.J.; Amis, A.A. Clinical biomechanics of instability related to total knee arthroplasty. Clin. Biomech. 2014, 29, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Nasab, S.H.; List, R.; Oberhofer, K.; Fucentese, S.F.; Snedeker, J.G.; Taylor, W.R. Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review. PLoS ONE 2016, 11, 28. [Google Scholar] [CrossRef]
- Blankevoort, L.; Huiskes, R.; de Lange, A. Recruitment of Knee Joint Ligaments. J. Biomech. Eng. 1991, 113, 94–103. [Google Scholar] [CrossRef]
- Hsich, Y.F.; Draganich, L.F. Knee kinematics and ligament lengths during physiologic levels of isometric quadriceps loads. Knee 1997, 4, 145–154. [Google Scholar] [CrossRef]
- Banks, S.A.; Markovich, G.D.; Hodge, W.A. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J. Arthroplast. 1997, 12, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Victor, J.; Banks, S.; Bellemans, J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: A prospective randomised outcome study. J. Bone Joint Surg. Br. 2005, 87, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Varadarajan, K.M.; Rubash, H.E.; Li, G. In vivo function of posterior cruciate ligament before and after posterior cruciate ligament-retaining total knee arthroplasty. Int. Orthop. 2012, 36, 1387–1392. [Google Scholar] [CrossRef]
- DeFrate, L.E.; Gill, T.J.; Li, G. In Vivo Function of the Posterior Cruciate Ligament during Weightbearing Knee Flexion. Am. J. Sports Med. 2004, 32, 1923–1928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini Nasab, S.H.; Bänteli, P.; List, R. Using Video-Fluoroscopy and Multibody Modelling to Unveil the Influence of a Gradually Reducing Femoral Radius on Ligament Elongation Patterns Following Posterior Cruciate-Retaining Total Knee Arthroplasty. Appl. Sci. 2024, 14, 9910. https://doi.org/10.3390/app14219910
Hosseini Nasab SH, Bänteli P, List R. Using Video-Fluoroscopy and Multibody Modelling to Unveil the Influence of a Gradually Reducing Femoral Radius on Ligament Elongation Patterns Following Posterior Cruciate-Retaining Total Knee Arthroplasty. Applied Sciences. 2024; 14(21):9910. https://doi.org/10.3390/app14219910
Chicago/Turabian StyleHosseini Nasab, Seyyed Hamed, Philipp Bänteli, and Renate List. 2024. "Using Video-Fluoroscopy and Multibody Modelling to Unveil the Influence of a Gradually Reducing Femoral Radius on Ligament Elongation Patterns Following Posterior Cruciate-Retaining Total Knee Arthroplasty" Applied Sciences 14, no. 21: 9910. https://doi.org/10.3390/app14219910
APA StyleHosseini Nasab, S. H., Bänteli, P., & List, R. (2024). Using Video-Fluoroscopy and Multibody Modelling to Unveil the Influence of a Gradually Reducing Femoral Radius on Ligament Elongation Patterns Following Posterior Cruciate-Retaining Total Knee Arthroplasty. Applied Sciences, 14(21), 9910. https://doi.org/10.3390/app14219910