Adsorption Separation of Various Polar Dyes in Water by Oil Sludge-Based Porous Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Preparation of OSC
2.2. Characterization Methods of OSC
2.3. Batch Adsorption Experiment
2.4. Calculation of the Dipole Moments for Organic Dyes of Different Polarities
2.5. Modeling of the Adsorption Isotherms
3. Results
3.1. Microstructure Analysis
3.1.1. Thermogravimetry-Differential Scanning Calorimetry, X-ray Diffraction and Fourier-Transform Infrared Spectroscopy Analysis
3.1.2. Specific Surface Area and Pore Size Distribution Analysis
3.1.3. Morphological Analysis
3.1.4. X-ray Photoelectron Spectroscopy Analysis
3.2. The Adsorption Properties of OSC for Organic Dyes
4. Discussion
4.1. The Adsorption Models and Mechanisms of OSC
4.2. Adsorption Mechanism of Organic Dyes by OSC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OS | Oily Sludge |
OSC | Oily Sludge-based porous Carbon |
NOSC | Oily Sludge-based porous carbon without the addition of a zinc chloride activator |
MG | Malachite Green |
MB | Methylene Blue |
CV | Crystal Violet |
PFO | Pseudo-first-orderequation |
PSO | Pseudo-second-orderequation |
EDA | electron-donor-acceptor |
References
- Han, D.; Li, X.; Gong, Z.; Jiang, L.; Wang, Z.; Liu, P. Hierarchical Porous Catalytic Pyrolysis Char Derived from Oily Sludge for Enhanced Adsorption. ACS Omega 2021, 6, 20549–20559. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, X.; Liang, H.; Chen, B.; Liu, Y.; Ma, Z.; Wang, Z. Characterization and treatment of oily sludge: A systematic review. Environ. Pollut. 2024, 344, 123245. [Google Scholar] [CrossRef] [PubMed]
- Saikia, N.; Sengupta, P.; Gogoi, P.K.; Borthakur, P.C. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Appl. Clay Sci. 2002, 22, 93–102. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Q.; Liu, X.; Cao, C. Low Temperature Pyrolysis Characteristics of Oil Sludge under Various Heating Conditions. Energy Fuels 2007, 21, 957–962. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- Alguacil, F.J.; López, F.A. Organic Dyes versus Adsorption Processing. Molecules 2021, 26, 5440. [Google Scholar] [CrossRef]
- Thirumalisamy, S.; Subbian, M. Removal of methylene blue from aqueous solution by activative carbon prepared from the peel of Cucumis sativa fruit by adsorption. BioResources 2010, 5, 419–437. [Google Scholar] [CrossRef]
- Taiwo, E.A.; Otolorin, J.A. Oil Recovery from Petroleum Sludge by Solvent Extraction. Pet. Sci. Technol. 2009, 27, 836–844. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, X.; Chu, X.; Chi, Y.; Yan, J.; Cen, K. Oil Recovery from Oil Sludge through Combined Ultrasound and Thermochemical Cleaning Treatment. Ind. Eng. Chem. Res. 2012, 51, 9213–9217. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, X.; Liu, J. Characteristics of oily sludge combustion in circulating fluidized beds. J. Hazard. Mater. 2009, 170, 175–179. [Google Scholar] [CrossRef]
- Leonard, S.A.; Stegemann, J.A. Stabilization/solidification of petroleum drill cuttings. J. Hazard. Mater. 2010, 174, 463–472. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.J.; Alves, F.C.; de França, F.P. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag. Res. 2012, 30, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- Koolivand, A.; Abtahi, H.; Godini, K.; Saeedi, R.; Rajaei, M.S.; Parhamfar, M.; Seifi, H. Biodegradation of oil tank bottom sludge using a new two-phase composting process: Kinetics and effect of different bulking agents. J. Mater. Cycles Waste Manag. 2019, 21, 1280–1290. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mirghaffari, N. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation. New Carbon Mater. 2015, 30, 310–318. [Google Scholar] [CrossRef]
- Yang, H.; Shen, K.; Fu, P.; Zhang, G. Preparation of a novel carbonaceous material for Cr(VI) removal in aqueous solution using oily sludge of tank bottom as a raw material. J. Environ. Chem. Eng. 2019, 7, 102898. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.a.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.-L.; Liu, R.; Cheng, M.; Xu, J.; Liao, M.; Mei, J.; Yang, L. Study on amino-directed modification of oil sludge-derived carbon and its adsorption behavior of bisphenol A in water. Sep. Purif. Technol. 2022, 298, 121625. [Google Scholar] [CrossRef]
- Mojoudi, N.; Mirghaffari, N.; Soleimani, M.; Shariatmadari, H.; Belver, C.; Bedia, J. Phenol adsorption on high microporous activated carbons prepared from oily sludge: Equilibrium, kinetic and thermodynamic studies. Sci. Rep. 2019, 9, 19352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, H.; Zhao, T.; Li, X.; Zhou, Y.; Guo, S.-H. Highly efficient removal of As(III), Zn(II), Cu(II) and Cd(II) in aqueous solution using thermal desorption residue from oil sludge contaminated soil: Performance and mechanism. J. Environ. Chem. Eng. 2022, 10, 107668. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Whitcombe, T.W.; McGill, W.B.; Thring, R.W. Application of oily sludge-derived char for lead and cadmium removal from aqueous solution. Chem. Eng. J. 2020, 384, 123386. [Google Scholar] [CrossRef]
- Usman, M.O.; Aturagaba, G.; Ntale, M.; Nyakairu, G.W. A review of adsorption techniques for removal of phosphates from wastewater. Water Sci. Technol. 2022, 86, 3113–3132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Lin, B.C.; Huang, Q.X.; Ma, Z.Y.; Chi, Y.; Yan, J.H. Micro- and mesoporous-enriched carbon materials prepared from a mixture of petroleum-derived oily sludge and biomass. Fuel Process. Technol. 2018, 171, 140–147. [Google Scholar] [CrossRef]
- Zhuang, X.; Wan, Y.; Feng, C.; Shen, Y.; Zhao, D. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chem. Mater. 2009, 21, 706–716. [Google Scholar] [CrossRef]
- Peiris, C.; Gunatilake, S.R.; Mlsna, T.E.; Mohan, D.; Vithanage, M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresour. Technol. 2017, 246, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Anichini, B.; Bakari, Z.; Bruzzoniti, M.C.; Camisa, R.; Caprini, C.; Checchini, L.; Fibbi, D.; El Ghadraoui, A.; Liguori, F.; et al. Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district. Sci. Total Environ. 2019, 708, 135217. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z.C.W. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Donald, J.; Ohtsuka, Y.; Xu, C.C. Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Mater. Lett. 2011, 65, 744–747. [Google Scholar] [CrossRef]
- Acharya, J.; Sahu, J.N.; Sahoo, B.K.; Mohanty, C.R.; Meikap, B.C. Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem. Eng. J. 2009, 150, 25–39. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Z.; Li, Q.; Chen, S.; An, S.; Zeng, Q.f.; Zhu, H. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite. J. Environ. Sci. 2010, 22, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.-D.; Li, B.; Deng, Z.-P.; Huo, L.-H.; Gao, S. A rational design of layered metal–organic framework towards high-performance adsorption of hazardous organic dye. Dalton Trans. 2021, 50, 7818–7825. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y. Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 2017, 202, 266–276. [Google Scholar] [CrossRef]
- David, L.; Moldovan, B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials 2020, 10, 202. [Google Scholar] [CrossRef]
- Han, B.; Isborn, C.M.; Shi, L. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models. J Chem Theory Comput 2021, 17, 889–901. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Fei, C. Comparison of Computational Methods for Atomic Charges. Acta Phys.-Chim. Sin. 2012, 28, 1–18. [Google Scholar]
- Choi, Y.K.; Kan, E. Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere 2019, 218, 741–748. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Cheng, F. Adsorption performance on tetracycline by novel magnetic adsorbent derived from hydrochar of low-rank coal and sewage sludge. Sep. Purif. Technol. 2024, 330, 125482. [Google Scholar] [CrossRef]
- Cheng, S.; Chang, F.; Zhang, F.; Huang, T.; Yoshikawa, K.; Zhang, H. Progress in thermal analysis studies on the pyrolysis process of oil sludge. Thermochim. Acta 2018, 663, 125–136. [Google Scholar] [CrossRef]
- Xin, W.; Li, X.; Song, Y. Sludge-based mesoporous activated carbon: The effect of hydrothermal pretreatment on material preparation and adsorption of bisphenol A. J. Chem. Technol. Biotechnol. 2020, 95, 1666–1674. [Google Scholar] [CrossRef]
- Boonprachai, R.; Autthawong, T.; Namsar, O.; Yodbunork, C.; Yodying, W.; Sarakonsri, T. Natural Porous Carbon Derived from Popped Rice as Anode Materials for Lithium-Ion Batteries. Crystals 2022, 12, 223. [Google Scholar] [CrossRef]
- Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Huang, Q.-X.; Ma, Z.; Chi, Y.; Yan, J.-H. Production and characterization of high quality activated carbon from oily sludge. Fuel Process. Technol. 2017, 162, 13–19. [Google Scholar] [CrossRef]
- Abraham, O.F.; Sunday, A.V.; EmenikeChinedozi, E.; ChinwokeOgbuefi, U. Rice husk derived graphene and zinc oxide composite anode for high reversible capacity lithium-ion batteries. Diam. Relat. Mater. 2022, 123, 108885. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Shcheblanov, N.S.; Povarnitsyn, M.E.; Li, Y.; Mavrič, A.; Zupančič, B.; Grdadolnik, J.; Pasquarello, A. Infrared spectra in amorphous alumina: A combined ab initio and experimental study. Phys. Rev. Mater. 2023, 7, 045604. [Google Scholar] [CrossRef]
- Lu, G.Q.; Low, J.C.; Liu, C.Y.; Lua, A.C. Surface area development of sewage sludge during pyrolysis. Fuel 1995, 74, 344–348. [Google Scholar] [CrossRef]
- Lennon, D.; Lundie, D.T.; Jackson, S.D.; Kelly, G.J.; Parker, S.F. Characterization of Activated Carbon Using X-ray Photoelectron Spectroscopy and Inelastic Neutron Scattering Spectroscopy. Langmuir 2002, 18, 4667–4673. [Google Scholar] [CrossRef]
- Zhang, N.; Ejtemaei, M.; Nguyen, A.V.; Zhou, C. XPS analysis of the surface chemistry of sulfuric acid-treated kaolinite and diaspore minerals with flotation reagents. Miner. Eng. 2019, 136, 1–7. [Google Scholar] [CrossRef]
- Shen, C.; Wang, H.; Shen, H.; Wu, J.; Zhu, Y.; Shi, W.; Zhang, X.; Ying, Z. NH4Br-Modified Biomass Char for Mercury Removal in a Simulated Oxy-fuel Atmosphere: Mechanism Analysis by X-ray Photoelectron Spectroscopy. Energy Fuels 2020, 34, 9872–9884. [Google Scholar] [CrossRef]
- Dietrich, P.M.; Glamsch, S.; Ehlert, C.; Lippitz, A.; Kulak, N.; Unger, W.E.S. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon. Appl. Surf. Sci. 2016, 363, 406–411. [Google Scholar] [CrossRef]
- Qin, H.; Kuang, W.; Huang, D.; Zhang, X.; Liu, J.; Yi, L.; Shen, F.; Wei, Z.; Huang, Y.; Xu, J.; et al. Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer. J. Mater. Chem. A 2022, 10, 17440–17451. [Google Scholar] [CrossRef]
- Theydan, S.K.; Ahmed, M.J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis 2012, 97, 116–122. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Q.; Feng, C.; Zhang, Z.; Lei, Z.; Shimizu, K. Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J. Mol. Liq. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Kotnala, S. Chapter 3—Fundamentals and mechanism of adsorption. In Sustainable Remediation Technologies for Emerging Pollutants in Aqueous Environment; Hadi Dehghani, M., Karri, R.R., Tyagi, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 29–62. [Google Scholar]
- Olam, M.; Gündüz, F.; Karaca, H. Production of activated carbon from duckweed and its effectiveness in crystal violet adsorption. Biomass Convers. Biorefinery 2024, 14, 19597–19612. [Google Scholar] [CrossRef]
SiO2 | CaO | Al2O3 | Fe2O3 | K2O | MgO | Na2O | TiO2 | SO3 | Cl | |
---|---|---|---|---|---|---|---|---|---|---|
w/% | 57.03 | 15.19 | 12.57 | 6.04 | 2.59 | 2.03 | 1.55 | 1.51 | 0.66 | 0.27 |
SSA(m2/g) | Total Pore Volume (cm3/g) | Mean Pore Diameter (nm) | |
---|---|---|---|
OSC500 | 10.4 | 0.0289 | 14.50 |
OSC700 | 10.95 | 0.0318 | 11.63 |
OSC900 | 6.43 | 0.0233 | 11.11 |
Single-Point Energy (RB3LYP)/Hartree | RMS Gradient Norm/Hartree | Dipole Moment/ Debye | Polarizability/a.u. | |
---|---|---|---|---|
MG | −843.6267 | 0.000004 | 11.0223 | 306.5257 |
MB | −899.0014 | 0.000014 | 14.9658 | 335.8883 |
CV | −1025.5797 | 0.000067 | 26.6531 | 237.6323 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g) | n | R2 | |
MG | 33.41129 | 0.16215 | 0.98824 | 65.61603 | 1.83793 | 0.9801 |
MB | 16.40958 | 0.02874 | 0.98351 | 3.52866 | 2.28707 | 0.98101 |
CV | 13.56116 | 0.32721 | 0.9909 | 215.04037 | 1.99561 | 0.53733 |
PFO | PSO | |||||
---|---|---|---|---|---|---|
qe (mg/g) | K1 | R2 | qe (mg/g) | K1 | R2 | |
MG | 0.0475 | 0.01544 | 0.90162 | 9.7267 | −0.04305 | 0.9999 |
MB | 1.1593 | 0.0642 | 0.8155 | 5.3578 | 0.0724 | 0.9981 |
CV | 1.1525 | 0.0616 | 0.9203 | 8.6311 | 0.4595 | 0.9967 |
ΔH (kJ/mol) | ΔS (J/(mol∙K)) | ΔG (kJ/mol) | |||
---|---|---|---|---|---|
298 K | 298 K | 298 K | |||
MG | −6189.0721 | 46.28820 | −20,045.2574 | −20,385.9097 | −20,868.9016 |
MB | −14,373.3921 | 1.4651 | −14,027.344 | −14,171.545 | −14,174.080 |
CV | −15,045.3788 | 3.9898 | −16,242.086 | −16,290.533 | −16,452.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Peng, L.; Liu, J.; Ma, C.; Hao, F.; Zheng, B.; Yang, J. Adsorption Separation of Various Polar Dyes in Water by Oil Sludge-Based Porous Carbon. Appl. Sci. 2024, 14, 7283. https://doi.org/10.3390/app14167283
Cheng H, Peng L, Liu J, Ma C, Hao F, Zheng B, Yang J. Adsorption Separation of Various Polar Dyes in Water by Oil Sludge-Based Porous Carbon. Applied Sciences. 2024; 14(16):7283. https://doi.org/10.3390/app14167283
Chicago/Turabian StyleCheng, Huanquan, Longgui Peng, Jia Liu, Cuiying Ma, Fangtao Hao, Bin Zheng, and Jianye Yang. 2024. "Adsorption Separation of Various Polar Dyes in Water by Oil Sludge-Based Porous Carbon" Applied Sciences 14, no. 16: 7283. https://doi.org/10.3390/app14167283
APA StyleCheng, H., Peng, L., Liu, J., Ma, C., Hao, F., Zheng, B., & Yang, J. (2024). Adsorption Separation of Various Polar Dyes in Water by Oil Sludge-Based Porous Carbon. Applied Sciences, 14(16), 7283. https://doi.org/10.3390/app14167283