Machine Learning for Predicting Neutron Effective Dose
Abstract
1. Introduction
2. Methodology
2.1. Data Preparation
2.2. ML Model Selection
2.3. Evaluation and Cross Validation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Snyder, W.S.; Ford, M.R.; Warner, G.G.; Fisher, H.L., Jr. Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom; Oak Ridge National Lab: Oak Ridge, TN, USA, 1969. [Google Scholar]
- Howell, R.W.; Wessels, B.W.; Loevinger, R.; MIRD Committee. The MIRD perspective 1999. J. Nucl. Med. 1999, 40, 3S–10S. [Google Scholar] [PubMed]
- Abadi, E.; Segars, W.P.; Tsui, B.M.; Kinahan, P.E.; Bottenus, N.; Frangi, A.F.; Maidment, A.; Lo, J.; Samei, E. Virtual clinical trials in medical imaging: A review. J. Med. Imaging 2020, 7, 042805–042845. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Yeom, Y.S.; Petoussi-Hen, N.; Zankl, M.; Bolch, W.E.; Lee, C.; Choi, C.; Nguyen, T.T.; Eckerman, K.; Kim, H.S.; et al. ICRP publication 145: Adult mesh-type reference computational phantoms. Ann. ICRP 2020, 49, 13–201. [Google Scholar] [CrossRef]
- Peng, Z.; Gao, N.; Wu, B.; Chen, Z.; Xu, X.G. A review of computational phantoms for quality assurance in radiology and radiotherapy in the deep-learning era. J. Radiat. Prot. Res. 2022, 47, 111–133. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection; ICRP Publication 26; ICRP Publication: Oxford, UK, 1977. [Google Scholar]
- International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection; ICRP Publication 60; The International Commission on Radiological Protection: New York, NY, USA, 1991. [Google Scholar]
- McCollough, C.H.; Schueler, B.A. Calculation of effective dose. Med. Phys. 2000, 27, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.A. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues: ICRU Report 46; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1992. [Google Scholar]
- Zankl, M.; Schlattl, H.; Petoussi-Henss, N.; Hoeschen, C. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms. Phys. Med. Biol. 2012, 57, 4501. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Q.; Lam, S.; Cai, J.; Yang, R. A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning. Front. Oncol. 2020, 10, 580919. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Lin, X.; Yi, Y.; Huang, Y.; Qu, L.; Zhuo, W.; Liu, H. Fast prediction of patient-specific organ doses in brain CT scans using support vector regression algorithm. Phys. Med. Biol. 2024, 69, 025010. [Google Scholar] [CrossRef]
- ICRPP. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP. 2009, 39, 1. [Google Scholar]
- ICRP. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116. Ann. ICRP 2010, 40, 2–5. [Google Scholar]
- Bozkurt, A.; Chao, T.C.; Xu, X.G. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-man anatomical model. Phys. Med. Biol. 2000, 45, 3059. [Google Scholar] [CrossRef] [PubMed]
- Hakimabad, H.M.; Motavalli, L.R.; Shahri, K.K. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom. J. Radiol. Prot. 2009, 29, 51. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.K.; Hussein, M.A.; Altaher, K.M.; Farid, K.Y.; Amer, M.; Aldhafery, B.F.; Alghamdi, A.A. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV. J. Radiol. Prot. 2014, 35, 75. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Deka, B.; Maji, P.; Mitra, S.; Bhattacharyya, D.; Bora, P.; Pal, S. Pattern Recognition and Machine Intelligence. In Proceedings of the 8th International Conference, PReMI 2019, Tezpur, India, 17–20 December 2019. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, S.; Valdes, G. Machine learning for radiation outcome modeling and prediction. Med. Phys. 2020, 47, e178–e184. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Cordeiro, T.P.V.; Silva, A.X.; Crispim, V.R. Calculation of conversion coefficients for effective dose for neutrons using a female voxel anthropomorphic model and the MCNPX code. In Proceedings of the INAC 2009: International Nuclear Atlantic Conference. Innovations in Nuclear Technology for a Sustainable Future, Rio de Janeiro, Brazil, 27 September–2 October 2009. [Google Scholar]
- Alghamdi, A.A.; Ma, A.; Tzortzis, M.; Spyrou, N.M. Neutron-fluence-to-dose conversion coefficients in an anthropomorphic phantom. Radiat. Prot. Dosim. 2005, 115, 606–611. [Google Scholar] [CrossRef]
ICRP-110-Male | ICRP-110-Female | ICRP-116-Female | ICRP-116-Male | VIP-Man | MIRD-Male | Saudi Voxel_Male | |
---|---|---|---|---|---|---|---|
1 | RBM | RBM | RBM | RBM | Adrenals | Bladder | * RBM |
2 | Colon | Colon | Colon | Colon | Bladder | Bone | * Colon |
3 | Stomach | Stomach | Stomach | Stomach | Esophagus | Colon | * Stomach |
4 | Gonad | Breast | Breast | Bone | Bone | Gonad | * Gonad |
5 | Bladder | Bladder | Bladder | Gonad | Brain | Lung | * Lung |
6 | Esophagus | Esophagus | Esophagus | Bladder | Liver | Liver | * Bladder |
7 | Liver | Liver | Liver | Esophagus | Heart | Esophagus | * Bone |
8 | Thyroid | Thyroid | Thyroid | Liver | RBM | RBM | * Esophagus |
9 | Brain | Brain | Brain | Thyroid | Kidneys | Skin | * Liver |
10 | Skin | Skin | Skin | Brain | Lung | Stomach | * Thyroid |
11 | Adrenals | Adrenals | Adrenals | Skin | Thyroid | * Brain | |
12 | Salivary | Salivary | Salivary | Adrenals | Muscle | * Skin | |
13 | Heart | Heart | Heart | Salivary | Skin | * Breast | |
14 | Kidneys | Kidneys | Kidneys | Heart | Stomach | * Salivary | |
18 | Lymph | Lymph | Lymph | Kidneys | Gonad | † Adrenal | |
19 | Muscle | Muscle | Muscle | Lymph | † Heart | ||
20 | Pancreas | Pancreas | Pancreas | Muscle | † Kidneys | ||
21 | Prostate | Ovaries | Ovaries | Pancreas | † Lymph | ||
22 | Intestine | Intestine | Intestine | Prostate | † Muscle | ||
23 | Spleen | Spleen | Spleen | Intestine | † Pancreas | ||
24 | Thymus | Thymus | Thymus | Spleen | † Prostate | ||
26 | Eye lens | Eye lens | Eye lens | Thymus | † Intestine | ||
27 | Gall Bladder | Uterus | Uterus | Eye lens | † Spleen | ||
28 | Endothoracic | Gall bladder | † Thymus | ||||
29 | Mucosa | Endothoracic | † Gall Bladder | ||||
30 | Breast | Mucosa |
ML Model | Mean Square Error | Mean Absolute Error | R2 |
---|---|---|---|
EXTR-C | 3.42 | 0.88 | 0.992 |
XGB-C | 1.57 | 0.01 | 0.996 |
GB-C | 5.41 | 1.32 | 0.987 |
EXTR | 6.54 | 1.24 | 0.984 |
XGB | 2.30 | 0.65 | 0.994 |
GB | 3.82 | 1.14 | 0.990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.A. Machine Learning for Predicting Neutron Effective Dose. Appl. Sci. 2024, 14, 5740. https://doi.org/10.3390/app14135740
Alghamdi AAA. Machine Learning for Predicting Neutron Effective Dose. Applied Sciences. 2024; 14(13):5740. https://doi.org/10.3390/app14135740
Chicago/Turabian StyleAlghamdi, Ali A. A. 2024. "Machine Learning for Predicting Neutron Effective Dose" Applied Sciences 14, no. 13: 5740. https://doi.org/10.3390/app14135740
APA StyleAlghamdi, A. A. A. (2024). Machine Learning for Predicting Neutron Effective Dose. Applied Sciences, 14(13), 5740. https://doi.org/10.3390/app14135740