A Literature Review of Parameter-Based Models for Walkability Evaluation
Abstract
:1. Introduction
- Which domain do the instruments cover/apply to?
- Which method of data collection is used in the instruments?
- Which level of application does the instrument refer to?
- Which type of users is the instrument adjusted to?
- Which aspect of analysis is in focus?
- What level of reliability does the instrument provide?
- What are the groups of indices that represent the instrument?
- What is the level of significance and contribution of each of the indicators for the observed methodologies?
2. Research Database Materials and Analysis
3. Results and Discussion
3.1. Pedestrian Health-Oriented Audit
3.2. Study of Environmental and Individual Determinants of Physical Activity
3.3. Neighborhood Environment Walkability Scale
3.4. Microscale Audit of Pedestrian Streetscapes
3.5. Neighborhood Brief Observation Tool
3.6. Irvine–Minnesota Inventory
3.7. Virtual Audit Tool
3.8. Universal Design and Health Promotion
3.9. Active Neighborhood Checklist
3.10. Systematic Pedestrian and Cycling Environmental Scan
3.11. Environmental Profile of a Community Health
3.12. Path Walkability Assessment
3.13. Walkability Assessment Checklist
3.14. Senior Walkability Environment Audit Tool
3.15. International Physical Activity Questionnaire
3.16. Path Walkability Indicators
3.17. International Physical Activity and Environment Network
3.18. Road Safety Audit
3.19. Pedestrian Level of Service
3.20. Gross Sidewalk Walkability Index
3.21. Pedestrian Environment Data Scan
3.22. Path Environment Audit Tool
3.23. Active Accessibility
3.24. Field Survey Instrument
3.25. Physical Activity Resource Assessment
3.26. Analytic Hierarchy Process
3.27. Utah Household Travel Survey
3.28. Pedestrian Environment Review System
3.29. Parks, Activity, and Recreations among Kids
3.30. China Urban Built Environment Data Scan Tool
3.31. Pedestrian Environment Review System
3.32. Virtual Systematic Tool for Evaluating Pedestrian Streetscapes
3.33. Audit of Physical Activity Resources for Seniors
3.34. Physical Activity Neighborhood Environment Scale
3.35. Graduate Ready for Activity Daily
3.36. Environmental Assessment of Public Recreation Spaces
3.37. Walk Score Index
3.38. School Audit Tool
3.39. Public Space Quality Index
3.40. Walking Suitability Index for Territory
3.41. GIS-Based Research and Theoretical Approach
4. Conclusions
- https://www.activelivingresearch.org/ (accessed on 19 January 2023).
- https://www.achp.gov/initiatives/sustainability-climate-resilience/community-livability-smart-growth (accessed on 19 January 2023).
- https://drjimsallis.org/measures.html (accessed on 19 January 2023).
- https://sdc.ahslabs.uic.edu/wp-content/uploads/sites/4/2014/04/ (accessed on 19 January 2023).
- https://www.road-safety-audit-wa.org/_home/check.html (accessed on 19 January 2023).
- https://trlsoftware.com/products/road-safety/street-auditing/streetaudit-pers/ (accessed on 19 January 2023).
- Physical activity;
- General or physical health, obesity, and body mass index;
- Movement (movement, path/route decision choice, type of walking: leisure; physical activity; shopping);
- Pedestrian behavior (behavior: rules of compliance, system functionality);
- Environment—built environment—urban patterns (land use);
- Environment—living environment (environment, climate, land, and air pollution);
- Social aspect—demography (gender, age, social, economic status).
- (a)
- Design of space and infrastructure—Functionality of space;
- (b)
- Safety and security (traffic safety, security depending on the level of criminality or natural phenomena);
- (c)
- Aesthetic values;
- (d)
- Connectivity;
- (e)
- Accessibility;
- (f)
- Modes of transport—mobility;
- (g)
- Comfort.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gehl, J. Gradovi za Ljude, 2nd ed.; Gradjevinska Knjiga: Beograd, Serbia, 2018. [Google Scholar]
- Nakamura, K. Experimental analysis of walkability evaluation using virtual reality application. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2481–2496. [Google Scholar] [CrossRef]
- Silvennoinen, H.; Kuliga, S.; Herthogs, P.; Recchia, D.R.; Tunçer, B. Effects of Gehl’s urban design guidelines on walkability: A virtual reality experiment in Singaporean public housing estates. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 2409–2428. [Google Scholar] [CrossRef]
- Hamilton-Baillie, B. Shared space: Reconciling people, places and traffic. Built Environ. 2008, 34, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Li, Z.; Xia, Q.; Peng, Y.; Cao, T.; Du, T.; Xing, Z. Walking in China’s historical and cultural streets: The factors affecting pedestrian walking behavior and walking experience. Land 2022, 11, 1491. [Google Scholar] [CrossRef]
- Vukmirovic, M.; Raspopovic Milic, M.; Jovic, J. Twitter Data Mining to Map Pedestrian Experience of Open Spaces. Appl. Sci. 2022, 12, 4143. [Google Scholar] [CrossRef]
- Kim, H.; Hong, S. Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use. Land 2021, 10, 37. [Google Scholar] [CrossRef]
- Panagopoulos, T.; Tampakis, S.; Karanikola, P.; Karipidou-Kanari, A.; Kantartzis, A. The Usage and Perception of Pedestrian and Cycling Streets on Residents’ Well-being in Kalamaria, Greece. Land 2018, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Rollo, J.; Fu, B.; Liu, C. Exploring Effective Built Environment Factors for Evaluating Pedestrian Volume in High-Density Areas: A New Finding for the Central Business District in Melbourne, Australia. Land 2021, 10, 655. [Google Scholar] [CrossRef]
- Iacono, M.; Krizek, K.J.; El-Geneidy, A. Measuring non-motorized accessibility: Issues, alternatives, and execution. J. Transp. Geogr. 2010, 18, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, Y.; Gan, W.; Zou, Y.; Dong, W.; Zhou, S.; Wang, M. A Survey of the Landscape Visibility Analysis Tools and Technical Improvements. Int. J. Environ. Res. Public Health 2023, 20, 1788. [Google Scholar] [CrossRef]
- Fernández-Aguilar, C.; Brosed-Lázaro, M.; Carmona-Derqui, D. Effectiveness of Mobility and Urban Sustainability Measures in Improving Citizen Health: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 2649. [Google Scholar] [CrossRef]
- Shaaban, K. Assessing Sidewalk and Corridor Walkability in Developing Countries. Sustainability 2019, 11, 3865. [Google Scholar] [CrossRef] [Green Version]
- Resch, B.; Puetz, I.; Bluemke, M.; Kyriakou, K.; Miksch, J. An Interdisciplinary Mixed-Methods Approach to Analyzing Urban Spaces: The Case of Urban Walkability and Bikeability. Int. J. Environ. Res. Public Health 2020, 17, 6994. [Google Scholar] [CrossRef] [PubMed]
- Arranz-López, A.; Soria-Lara, J.A.; Witlox, F.; Páez, A. Measuring relative non-motorized accessibility to retail activities. Int. J. Sustain. Transp. 2019, 13, 639–651. [Google Scholar] [CrossRef]
- Gerike, R.; Koszowski, C.; Schröter, B.; Buehler, R.; Schepers, P.; Weber, J.; Wittwer, R.; Jones, P. Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design. Sustainability 2021, 13, 9362. [Google Scholar] [CrossRef]
- Bagheri, B.; Najari, S.; Hasanvand, S.; Ghamari, M. Analyzing the indicators walkability of cities, in order to improving urban vitality. Int. J. Mod. Eng. Res. 2014, 4, 61–68. [Google Scholar]
- Southworth, M. Designing the Walkable City. J. Urban Plan. Dev. 2005, 131, 246–257. [Google Scholar] [CrossRef]
- Brownson, R.; Hoehner, C.; Day, K.; Forsyth, A.; Sallis, J. Measuring the Built Environment for Physical Activity: State of the Science. Am. J. Prev. Med. 2009, 36, S99–S123.e12. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaee, S.; Aghaabbasi, M.; Mahdiyar, A.; Zainol, R.; Ismail, S. Measurement Quality Appraisal Instrument for Evaluation of Walkability Assessment Tools Based on Walking Needs. Sustainability 2021, 13, 11342. [Google Scholar] [CrossRef]
- Saadi, I.; Aganze, R.; Moeinaddini, M.; Asadi-Shekari, Z.; Cools, M. A Participatory Assessment of Perceived Neighbourhood Walkability in a Small Urban Environment. Sustainability 2022, 14, 206. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Sullivan, W.; Larsen, L. Measuring Neighborhood Walkable Environments: A Comparison of Three Approaches. Int. J. Environ. Res. Public Health 2017, 14, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Yan, Y.; Zhang, X.; Chen, J. A Study on the Impact of Built Environment Elements on Satisfaction with Residency Whilst Considering Spatial Heterogeneity. Sustainability 2022, 14, 15011. [Google Scholar] [CrossRef]
- McCormack, G.R.; McLaren, L.; Salvo, G.; Blackstaffe, A. Changes in Objectively-Determined Walkability and Physical Activity in Adults: A Quasi-Longitudinal Residential Relocation Study. Int. J. Environ. Res. Public Health 2017, 14, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyvanfar, A.; Ferwati, M.S.; Shafaghat, A.; Lamit, H. A Path Walkability Assessment Index Model for Evaluating and Facilitating Retail Walking Using Decision-Tree-Making (DTM) Method. Sustainability 2018, 10, 1035. [Google Scholar] [CrossRef] [Green Version]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Moudon, A.; Chanam, L. Walking and Bicycling: An Evaluation of Environmental Audit Instruments. Am. J. Health Promot. 2003, 18, 21–37. [Google Scholar] [CrossRef]
- McCormac, G.R.; Masse, L.C.; Bulsara, M.; Pikora, T.J.; Giles-Corti, B. Constructing indices representing supportiveness of the physical environment for walking using the Rasch measurement model. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 44–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, R.L.; Maantay, J.A.; Fahs, M. Promoting Active Urban Aging: A Measurement Approach to Neighborhood Walkability for Older Adults. Cities Environ. 2010, 3, 12. [Google Scholar] [CrossRef]
- Brownson, R.C.; Chang, J.J.; Eyler, A.A.; Ainsworth, B.E.; Kirtland, K.A.; Saelens, B.; Sallis, J.F. Measuring the environment for friendliness toward physical activity: A comparison of the reliability of 3 questionnaires. Am. J. Public Health 2004, 94, 473–483. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-based differences in physical activity: An environment scale evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef]
- Rosenberg, D.; Ding, D.; Sallis, J.F.; Kerr, J.; Norman, G.J.; Durant, N.; Harris, S.K.; Saelens, B.E. Neighborhood Environment Walkability Scale for Youth (NEWS-Y): Reliability and Relationship with Physical Activity. Prev. Med. 2009, 49, 213–218. [Google Scholar] [CrossRef]
- Adlakha, D.; Hipp, J.A.; Brownson, R.C. Adaptation and Evaluation of the Neighborhood Environment Walkability Scale in India (NEWS-India). Int. J. Environ. Res. Public Health 2016, 13, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, W.A.; Brown, B.B.; Smith, K.R.; Brewer, S.C.; Amburgey, J.W.; McIff, B. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates. Int. J. Environ. Res. Public Health 2017, 14, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Cheung, O.; Lau, K.; Woo, J. Associations between Perceived Neighborhood Walkability and Walking Time, Wellbeing, and Loneliness in Community-Dwelling Older Chinese People in Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 1199. [Google Scholar] [CrossRef] [PubMed]
- Millstein, R.A.; Cain, K.L.; Sallis, J.F. Development, scoring, and reliability of the Microscale Audit of Pedestrian Streetscapes (MAPS). BMC Public Health 2013, 12, 403. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Cain, K.L.; Conway, T.L.; Gavand, K.A.; Milstein, R.A.; Geremia, C.M.; Frank, L.D.; Saelens, B.E.; Glanz, K.; King, A.C. Is Your Neighborhood Designed to Support Physical Activity? A Brief Streetscape Audit Tool. Prev. Chronic Dis. 2005, 12, E141. [Google Scholar] [CrossRef] [Green Version]
- Cain, K.L.; Gawand, K.; Conway, T.L.; Geremia, R.; Millstein, R.; Frank, L.; Saelens, B.; Adams, M.; Glanz, K.; King, A.; et al. Developing and Validating an Abbreviated Version of the Microscale Audit for Pedestrian Streetscapes (MAPS-Abbreviated). J. Transp. Health 2017, 5, 84–96. [Google Scholar] [CrossRef]
- Evenson, K.R.; Sotres-Alvarez, D.; Herring, A.H.; Messer, L.; Laraia, B.A.; Rodríguez, D.A. Assessing urban and rural neighborhood characteristics using audit and GIS data: Derivation and reliability of constructs. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Caughy, M.O.; O’Campo, P.J.; Patterson, J. A brief observational measure for urban neighborhoods. Health Place 2001, 7, 225–236. [Google Scholar] [CrossRef]
- Gasevic, D.; Vukmirovich, I.; Yusuf, S.; Teo, K.; Chow, C.; Dagenais, G.; Lear, S.A. A direct assessment of “obesogenic” built environments: Challenges and recommendations. J. Environ. Public Health 2011, 2011, 161574. [Google Scholar] [CrossRef]
- Brown, B.B.; Werner, C.M.; Amburgey, J.W.; Szalay, C. Walkable Route Perceptions and Physical Features: Converging Evidence for En Route Walking Experiences. Environ. Behav. 2007, 39, 34–61. [Google Scholar] [CrossRef]
- Gallimore, J.M.; Brown, B.B.; Werner, C.M. Walking routes to school in new urban and suburban neighborhoods: An environmental walkability analysis of blocks and routes. J. Environ. Psychol. 2011, 31, 184–191. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Forsyth, A.; Day, K.; Oakes, J.M. The Street Level Built Environment and Physical Activity and Walking: Results of a Predictive Validity Study for the Irvine Minnesota Inventory. Environ. Behav. 2011, 43, 735–775. [Google Scholar] [CrossRef]
- Bethlehem, J.R.; Mackenbach, J.D.; Ben-Rebah, M.; Compernolle, S.; Glonti, K.; Bárdos, H.; Rutter, H.R.; Charreire, H.; Oppert, J.-M.; Brug, J.; et al. The SPOTLIGHT virtual audit tool: A valid and reliable tool to assess obesogenic characteristics of the built environment. Int. J. Health Geogr. 2014, 13, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintas, R.; Koutsogeorgou, E.; Raggi, A.; Bucciarelli, P.; Cerniauskaite, M.; Leonardi, M. The selection of items for the preliminary version of the COURAGE in Europe built environment instrument. Maturitas 2012, 71, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Hoehner, C.M.; Ivy, A.; Ramirez, L.K.; Handy, S.; Brownson, R.C. Active neighborhood checklist: A user-friendly and reliable tool for assessing activity friendliness. Am. J. Health Promot. AJHP 2007, 21, 534–537. [Google Scholar] [CrossRef]
- Kelly, C.M.; Wilson, J.S.; Baker, E.A.; Miller, D.K.; Schootman, M. Using Google Street View to audit the built environment: Inter-rater reliability results. Ann. Behav. Med. A Publ. Soc. Behav. Med. 2013, 45, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.; Wilson, J.S.; Schootman, M.; Clennin, M.; Baker, E.A.; Miller, D.K. The built environment predicts observed physical activity. Front. Public Health 2014, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Brownson, R.C.; Hoehner, C.M.; Brennan, L.K.; Cook, R.A.; Elliott, M.T.; Mcmullen, K.M. Reliability of 2 Instruments for Auditing the Environment for Physical Activity. J. Phys. Act. Health 2004, 1, 191–208. [Google Scholar] [CrossRef]
- Pikora, T.J.; Bull, F.C.; Jamrozik, K.; Knuiman, M.; Giles-Corti, B.; Donovan, R.J. Developing a reliable audit instrument to measure the physical environment for physical activity. Am. J. Prev. Med. 2002, 23, 187–194. [Google Scholar] [CrossRef]
- Pikora, T.; Giles-Corti, B.; Bull, F.C.; Jamrozik, K.D.; Donovan, R.J. Developing a framework for assessment of the environmental determinants of walking and cycling. Soc. Sci. Med. 2003, 56, 1693–1703. [Google Scholar] [CrossRef]
- Gullón, P.; Badland, H.M.; Alfayate, S.; Bilal, U.; Escobar, F.; Cebrecos, A.; Diez, J.; Franco, M. Assessing Walking and Cycling Environments in the Streets of Madrid: Comparing On-Field and Virtual Audits. J. Urban Health 2015, 92, 923–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.K.; Corsi, D.J.; Lock, K.; Madhavan, M.; Mackie, P.; Li, W.; Yi, S.; Wang, Y.; Swaminathan, S.; Lopez-Jaramillo, P.; et al. A novel method to evaluate the community built environment using photographs--Environmental Profile of a Community Health (EPOCH) photo neighbourhood evaluation tool. PLoS ONE 2014, 9, e110042. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.A.; Watson, K.; Baranowski, T.; Nicklas, T.A.; Uscanga, D.K.; Hanfling, M.J. Validity of instruments to assess students’ travel and pedestrian safety. BMC Public Health 2010, 10, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, G.O.; Michael, Y.L.; Farquhar, S.A.; Lapidus, J. Developing a reliable Senior Walking Environmental Assessment Tool. Am. J. Prev. Med. 2005, 29, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, H.; Sarte, A.; Michael, Y.; Mahmood, A.; Keast, E.; Dogaru, C.; Wister, A. Use of a Systematic Observational Measure to Assess and Compare Walkability for Older Adults in Vancouver, British Columbia and Portland, Oregon Neighbourhoods. J. Urban Des. 2011, 16, 433–454. [Google Scholar] [CrossRef]
- McGregor, E.M. Validation of a Senior Walking Environmental Assessment Tool. Ph.D. Thesis, Oregon Health & Science University, Portland, OR, USA, 2007. [Google Scholar] [CrossRef]
- Michael, Y.L.; Keast, E.M.; Chaudhury, H.; Day, K.; Mahmood, A.; Sarte, A.F. Revising the senior walking environmental assessment tool. Prev. Med. 2009, 48, 247–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebel, K.; Bauman, A.E.; Sugiyama, T.; Owen, N. Mismatch between perceived and objectively assessed neighborhood walkability attributes: Prospective relationships with walking and weight gain. Health Place 2011, 17, 519–524. [Google Scholar] [CrossRef]
- Owen, N.; Cerin, E.; Leslie, E.; duToit, L.; Coffee, N.; Frank, L.D.; Bauman, A.E.; Hugo, G.; Saelens, B.E.; Sallis, J.F. Neighborhood walkability and the walking behavior of Australian adults. Am. J. Prev. Med. 2007, 33, 387–395. [Google Scholar] [CrossRef]
- Ryan, D.J.; Wullems, J.A.; Stebbings, G.K.; Morse, C.I.; Stewart, C.E.; Onambele-Pearson, G.L. Reliability and validity of the international physical activity questionnaire compared to calibrated accelerometer cut-off points in the quantification of sedentary behaviour and physical activity in older adults. PLoS ONE 2018, 13, e0195712. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Sebastião, E.; Gobbi, S.; Chodzko-Zajko, W.; Schwingel, A.; Papini, C.B.; Nakamura, P.M.; Netto, A.V.; Kokubun, E. The International Physical Activity Questionnaire-long form overestimates self-reported physical activity of Brazilian adults. Public Health 2012, 126, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Keats, M.R.; Cui, Y.; DeClercq, V.; Grandy, S.A.; Sweeney, E.; Dummer, T.J.B. Associations between Neighborhood Walkability, Physical Activity, and Chronic Disease in Nova Scotian Adults: An Atlantic PATH Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 8643. [Google Scholar] [CrossRef]
- Moayedi, F.; Zakaria, R.; Bigah, Y.; Mustafar, M.; Che Puan, O.; Zin, I.S.; Klufallah, M.M.A. Conceptualising the Indicators of Walkability for Sustainable Transportation. J. Teknol. 2013, 65, 2180–3722. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.; Sallis, J.F.; Owen, N.; De Bourdeaudhuij, I.; Cerin, E.; Sugiyama, T.; Reis, R.; Sarmiento, O.; Frömel, K.; Mitás, J.; et al. Advancing science and policy through a coordinated international study of physical activity and built environments: IPEN adult methods. J. Phys. Act. Health 2013, 10, 581–601. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cerin, E.; Kerr, J.; Adams, M.A.; Sugiyama, T.; Christiansen, L.B.; Schipperijn, J.; Davey, R.; Salvo, D.; Frank, L.D.; et al. Built Environment, Physical Activity, and Obesity: Findings from the International Physical Activity and Environment Network (IPEN) Adult Study. Annu. Rev. Public Health 2020, 41, 119–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.; Kumfer, W.; Lang, K.; Zegeer, C.; Sandt, L.; Lan, B.; Nordback, K.; Bergh, C.; Butsick, A.; Horowitz, Z.; et al. Systemic pedestrian safety analysis: Contractor’s technical report. National Cooperative Highway Research Program. Transp. Res. Board 2018, 118, 17–73. [Google Scholar] [CrossRef]
- Landis, B.W.; Vattikuti, V.R.; Ottenberg, R.M.; McLeod, D.S.; Guttenplan, M. Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transp. Res. Rec. 2001, 1773, 82–88. [Google Scholar] [CrossRef]
- Christopoulou, P.; Pitsiava-Latinopoulou, M. Development of a Model for the Estimation of Pedestrian Level of Service in Greek Urban Areas. Procedia Soc. Behav. Sci. 2012, 48, 1691–1701. [Google Scholar] [CrossRef] [Green Version]
- Gokhale, M.V.; Telang, M.V. Development of Sidewalk Evaluation Model for Existing Pedestrian Environment in Indian Cities: Case Example of Pune City, Maharashtra, India. Int. J. Sci. Res. 2013, 2, 39–44. [Google Scholar] [CrossRef]
- Clifton, K.J.; Smith, A.L.; Rodriguez, D.A. The development and testing of an audit for the pedestrian environment. Landsc. Urban Plan. 2007, 80, 95–110. [Google Scholar] [CrossRef]
- Sousa, A.; Santos, B.; Goncalves, J. Pedestrian Environment Quality Assessment in Portuguese Medium-Sized Cities. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 11. [Google Scholar] [CrossRef]
- Troped, P.J.; Cromley, E.K.; Fragala, M.S.; Melly, S.J.; Hasbrouck, H.H.; Gortmaker, S.L.; Brownson, R.C. Development and Reliability and Validity Testing of an Audit Tool for Trail/Path Characteristics: The Path Environment Audit Tool (PEAT). J. Phys. Act. Health 2006, 3, 158–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale, D.S.; Saraiva, M.; Pereira, M. Active accessibility: A review of operational measures of walking and cycling accessibility. J. Transp. Land Use 2015, 9, 209–235. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S.; Brownson, R.C.; Clemente, O.; Winston, E. Identifying and Measuring Urban Design Qualities Related to Walkability. J. Phys. Act. Health 2006, 3, 223–240. [Google Scholar] [CrossRef]
- Lee, R.E.; Booth, K.M.; Reese-Smith, J.Y.; Regan, G.; Howard, H.H. The Physical Activity Resource Assessment (PARA) instrument: Evaluating features, amenities and incivilities of physical activity resources in urban neighborhoods. Int. J. Behav. Nutr. Phys. Act. 2005, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Basile, O.; Persia, L.; Usami, D.S. A methodology to assess pedestrian crossing safety. Eur. Transp. Res. Rev. 2010, 2, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.D.; Xiao, W.; Wen, M.; Wei, R. Walkability, Land Use and Physical Activity. Sustainability 2016, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Amoroso, S.; Castelluccio, F.; Maritano, L. Indicators for sustainable pedestrian mobility. Urban Transp. 2012, 18, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.; Clark, S. New Directions in Street Auditing: Lessons from the PERS Audits. In Proceedings of the 8th International Conference on Walking and Liveable Communities, Toronto, ON, Canada, 1–14 October 2007; Available online: http://library.walk21.com/ (accessed on 21 March 2023).
- Bird, M.E.; Datta, G.D.; van Hulst, A.; Kestens, Y.; Barnett, T.A. A reliability assessment of a direct-observation park evaluation tool: The Parks, activity and recreation among kids (PARK) tool. BMC Public Health 2015, 15, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Du, Y.; Liu, Q.; Ren, Y.; Kawachi, I.; Lv, J.; Li, L. Objective assessment of urban built environment related to physical activity—Development, reliability and validity of the China Urban Built Environment Scan Tool (CUBEST). BMC Public Health 2014, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Griew, P.; Hillsdon, M.; Foster, C.; Coombes, E.; Jones, A.; Wilkinson, P. Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz-Wood, M.; Velauthapillai, K.; O’Brien, G.; Ross, N.A. Assessing the micro-scale environment using Google Street View: The Virtual Systematic Tool for Evaluating Pedestrian Streetscapes (Virtual-STEPS). BMC Public Health 2019, 19, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, J.; Carlson, J.A.; Sallis, J.F.; Rosenberg, D.; Leak, C.R.; Saelens, B.E.; Chapman, J.E.; Frank, L.D.; King, A.C. Assessing health-related resources in senior living residences. J. Aging Stud. 2011, 25, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Kerr, J.; Carlson, J.; Norman, G.; Saelens, B.; Durant, N.; Ainsworth, B. Evaluating a Brief Self-Report Measure of Neighborhood Environments for Physical Activity Research and Surveillance: Physical Activity Neighborhood Environment Scale (PANES). J. Phys. Act. Health 2010, 7, 533–540. [Google Scholar] [CrossRef]
- Bergman, P.; Grjibovski, A.M.; Hagströmer, M.; Sallis, J.F.; Sjöström, M. The association between health enhancing physical activity and neighbourhood environment among Swedish adults—A population-based cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Bowles, H.R.; Bauman, A.; Ainsworth, B.E.; Bull, F.C.; Craig, C.L.; Sjöström, M.; De Bourdeaudhuij, I.; Lefevre, J.; Matsudo, V.; et al. Neighborhood Environments and Physical Activity Among Adults in 11 Countries. Am. J. Prev. Med. 2009, 36, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Oyeyemi, A.L.; Sallis, J.F.; Oyeyemi, A.Y.; Amin, M.M.; De Bourdeaudhuij, I.; Deforche, B. Adaptation, Test-Retest Reliability, and Construct Validity of the Physical Activity Neighborhood Environment Scale in Nigeria (PANES-N). J. Phys. Act. Health 2013, 10, 1079–1090. [Google Scholar] [CrossRef]
- Adams, M.A.; Frank, L.D.; Schipperijn, J.; Smith, G.; Chapman, J.; Christiansen, L.B.; Coffee, N.; Salvo, D.; du Toit, L.; Dygrýn, J.; et al. International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: The IPEN adult study. Int. J. Health Geogr. 2014, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Adams, M.A.; Sallis, J.F.; Norman, G.J.; Hovell, M.F.; Chambers, C.D.; Hofstetter, C.R.; Bowles, H.R.; Hagströmer, M.; Craig, C.L.; et al. Perceived neighborhood environment and physical activity in 11 countries: Do associations differ by country? Int. J. Behav. Nutr. Phys. Act. 2013, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallis, J.F.; Johnson, M.F.; Calfas, K.J.; Caparosa, S.; Nichols, J.F. Assessing Perceived Physical Environmental Variables that May Influence Physical Activity. Res. Q. Exerc. Sport 1997, 68, 345–351. [Google Scholar] [CrossRef]
- Sallis, J.F.; Calfas, K.J.; Alcaraz, J.; Gehrman, E.C.; Johnson, M.F. Potential mediators of change in a physical activity promotion course for university students: Project grad. Ann. Behav. Med. 1999, 21, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Calfas, K.J.; Sallis, J.F.; Nichols, J.F.; Sarkin, J.A.; Johnson, M.F.; Caparosa, S.; Thompson, S.; Gehrman, C.A.; Alcaraz, J.E. Project GRAD: Two-year outcomes of a randomized controlled physical activity intervention among young adults11Tables of correlation coefficients and regression results are available from the first author upon request. Am. J. Prev. Med. 2000, 18, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Saelens, B.E.; Frank, L.D.; Auffrey, C.R.; Whitaker, C.; Burdette, H.L.; Colabianchi, N. Measuring Physical Environments of Parks and Playgrounds: EAPRS Instrument Development and Inter-Rater Reliability. J. Phys. Act. Health 2006, 3, S190–S207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geremia, C.M.; Cain, K.L.; Conway, T.L.; Sallis, J.F.; Saelens, B.E. Validating and Shortening the Environmental Assessment of Public Recreation Spaces Observational Measure. J. Phys. Act. Health 2019, 16, 68–75. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the Neighborhood Quality of Life Study. Br. J. Sports Med. 2010, 44, 924–933. [Google Scholar] [CrossRef]
- Lam, T.M.; Wang, Z.; Vaartjes, I.; Karssenberg, D.; Ettema, D.; Helbich, M.; Timmermans, E.J.; Frank, L.D.; Braver, N.R.D.; Wagtendonk, A.J.; et al. Development of an objectively measured walkability index for the Netherlands. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 50. [Google Scholar] [CrossRef]
- Habibian, M.; Hosseinzadeh, A. Walkability index across trip purposes. Sustain. Cities Soc. 2018, 42, 216–225. [Google Scholar] [CrossRef]
- Alves, F.; Cruz, S.; Ribeiro, A.; Bastos Silva, A.; Martins, J.; Cunha, I. Walkability Index for Elderly Health: A Proposal. Sustainability 2020, 12, 7360. [Google Scholar] [CrossRef]
- Roosevelt, M. How Walkable Is Your Neighborhood. The New York Times. Available online: https://www.nytimes.com/2008/08/10/realestate/10post.html (accessed on 7 March 2023).
- Shaaban, K.; Abdur-Rouf, K. Development, Validation, and Application of School Audit Tool (SAT): An Effective Instrument for Assessing Traffic Safety and Operation Around Schools. Sustainability 2019, 11, 6438. [Google Scholar] [CrossRef] [Green Version]
- Manzolli, J.A.; Oliveira, A.; Neto, M.D.C. Evaluating Walkability through a Multi-Criteria Decision Analysis Approach: A Lisbon Case Study. Sustainability 2021, 13, 1450. [Google Scholar] [CrossRef]
- He, P.; Herthogs, P.; Cinelli, M.; Tomarchio, L.; Tunçer, B. A Multi-Criteria Decision Analysis Based Framework to Evaluate Public Space Quality. In Smart and Sustainable Cities and Buildings; Roggema, R., Roggema, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Seema, P.; Pushplata, G. Public space quality evaluation: Prerequisite for public space management. J. Public Space 2019, 4, 93–126. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Valeri, D.; Appolloni, L. Reliability of T-WSI to Evaluate Neighborhoods Walkability and Its Changes over Time. Int. J. Environ. Res. Public Health 2020, 17, 7709. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.; Assenso, M.; Appolloni, L.; Cappucciti, A. The Walking Suitability Index of the Territory (T-WSI): A new tool to evaluate urban neighborhood walkability. Ann. Ig. Med. Prev. Comunita. 2015, 27, 678–687. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Appolloni, L.; Capasso, L. How walkable is the city? Application of the Walking Suitability Index of the Territory (T-WSI) to the city of Rieti (Lazio Region, Central Italy). Epidemiol. Prev. 2016, 40, 237–242. [Google Scholar] [CrossRef]
- Hanibuchi, T.; Nakaya, T.; Yonejima, M.; Honjo, K. Perceived and Objective Measures of Neighborhood Walkability and Physical Activity among Adults in Japan: A Multilevel Analysis of a Nationally Representative Sample. Int. J. Environ. Res. Public Health 2015, 12, 13350–13364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, H.; Nakaya, T.; Hanibuchi, T.; Fukushima, N.; Amagasa, S.; Oka, K.; Sallis, J.F.; Inoue, S. Objectively Measured Neighborhood Walkability and Change in Physical Activity in Older Japanese Adults: A Five-Year Cohort Study. Int. J. Environ. Res. Public Health 2018, 15, 1814. [Google Scholar] [CrossRef] [Green Version]
- Al Shammas, T.; Escobar, F. Comfort and Time-Based Walkability Index Design: A GIS-Based Proposal. Int. J. Environ. Res. Public Health 2019, 16, 2850. [Google Scholar] [CrossRef] [Green Version]
- Amaya, V.; Moulaert, T.; Gwiazdzinski, L.; Vuillerme, N. Assessing and Qualifying Neighborhood Walkability for Older Adults: Construction and Initial Testing of a Multivariate Spatial Accessibility Model. Int. J. Environ. Res. Public Health 2022, 19, 1808. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Chayphong, S.; Kantavat, P.; Hayashi, Y.; Kijsirikul, B.; Iwahori, Y. Exploring the Spatial Effects of Built Environment on Quality of Life Related Transportation by Integrating GIS and Deep Learning Approaches. Sustainability 2023, 15, 2785. [Google Scholar] [CrossRef]
- D’Orso, G.; Migliore, M. A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transp. Geogr. 2020, 82, 102555. [Google Scholar] [CrossRef]
- Ignaccolo, M.; Inturri, G.; Giuffrida, N.; Le Pira, M.; Torrisi, V.; Calabrò, G. A step towards walkable environments: Spatial analysis of pedestrian compatibility in an urban context. Eur. Transp. Trasp. Eur. 2020, 76, 1–12. [Google Scholar] [CrossRef]
Abbreviation | Full Name of the Methodology/Instrument | Original Research | Country | Year | No. Indices |
---|---|---|---|---|---|
PHOA | Pedestrian Health-Oriented Audit | [27] | USA | 2003 | 116 |
SEID | Study of Env. & Individual Det. of Physical Activity | [28] | AUS | 2006 | 59 |
NEWS | Neighborhood Environment Walkability Scale | [31] | USA | 2004 | 71 |
MAPS | Microscale Audit of Pedestrian Streetscapes | [36] | USA | 2013 | 84 |
NBOT | Neighborhood Brief Observation Tool | [39] | USA | 2009 | 42 |
IMI | Irvine–Minnesota Inventory | [44] | USA | 2007 | 88 |
S-VAT | Spotlight Virtual Audit Tool | [45] | HOL | 2014 | 18 |
COURAGE | Collaborative Research of AGEing i EU | [46] | EU | 2011 | 77 |
ANC | Active Neighborhood Checklist | [47] | USA | 2013 | 72 |
SPACES | Systematic Pedestrian and Cycling Environment Scan | [51] | AUS | 2002 | 55 |
EPOCH | Environmental Profile of a Community Health | [54] | WW | 2014 | 77 |
PWA | Path Walkability Assessment | [25] | MAL | 2018 | 66 |
WAC | Walkability Assessment Checklist | [55] | USA | 2010 | 78 |
SWEAT | Senior Walking Environment Audit Tool | [56] | CAN | 2011 | 51 |
IPAQ | International Physical activity Questionnaire | [63] | AUS | 2007 | 3 |
PWI | Path Walkability Indicators | [67] | MAL | 2013 | 92 |
IPEN | International Physical Activity & Env. Network | [69] | WW | 2013 | 85 |
RSA | Road Safety Audit | [70] | USA | 2018 | 56 |
PLOS | Pedestrian Level of Service | [71] | USA | 2001 | 38 |
GSWI | Gross Sidewalk Walkability Index | [73] | IND | 2013 | 56 |
PEDS | Pedestrian Environment Data Scan | [74] | USA | 2007 | 57 |
PEAT | Path Environment Audit Tool | [76] | USA | 2006 | 85 |
AA | Active Accessibility | [77] | POR | 2016 | 72 |
FSI | Field Survey Instrument | [78] | USA | 2006 | 60 |
PARA | Physical Activity Resource Assessment | [79] | USA | 2005 | 18 |
AHP | Analytic Hierarchy Process | [80] | EU | 2010 | 73 |
UHTS | Utah Household Travel Survey | [81] | USA | 2016 | 16 |
PEQI | Pedestrian Environment Quality Index | [82] | ITA | 2012 | 105 |
PARK | Parks, Activity and Recreations among Kids | [84] | CAN | 2015 | 35 |
CUBEST | China Urban Built Environment Data Scan Tool | [85] | CHN | 2014 | 28 |
PERS | Pedestrian Environment Review System | [86] | UK | 2013 | 40 |
V-STEPS | Virtual Systematic Tool for Evaluating Ped. Street. | [87] | CAN | 2019 | 43 |
APARS | Audit of Physical Activity Resources for Seniors | [88] | USA | 2011 | 21 |
PANES | Physical Activity Neighborhood Environment Scale | [89] | USA | 2010 | 17 |
GRAD | Graduate Ready for Activity Daily | [96] | USA | 1999 | 10 |
EAPRS | Environmental Assessment of Public Recreation Spaces | [98] | USA | 2006 | 19 |
WSI | Walk Score Index | [104] | USA | 2007 | 6 |
SAT | School Audit Tool | [105] | UAE | 2019 | 30 |
PSQI | Public Space Quality Index | [107] | SG | 2020 | 26 |
T-WSI | Walking Suitability Index for Territory | [110] | ITA | 2020 | 12 |
Abbrev. | Collect. Meth. | Level of Appl. | Unit | Users Adjusted: | Aspect | Subj./Obj. | Qual./Quant | Reliability |
---|---|---|---|---|---|---|---|---|
PHOA | Thr | Mic | A, S | P, B | W, B | O | Qt | *** |
SEID | Thr | Mic | S | P | W | O | Qt, Ql | ** |
NEWS | FDC, Q | Mic | S, A | P, B | W | S | Qt | *** |
MAPS | FDC, Q | Mic | S, A, P | P | PA | O | Ql | *** |
NBOT | FDC | Mic | S | P | W, B | O | Qt | ** |
IMI | FDC, CK | Mic | S | P | P | O | Qt, Ql | *** |
S-VAT | DDC | Mic | S | P, B | PA | O | Qt | ** |
COURAGE | Thr | Mic | S | P | PA, K | O | Ql | ** |
ANC | FDC | Mic | S | P | P | O | Ql | *** |
SPACES | FDC | Mic | S | P, B | PA | S, O | Ql | *** |
EPOCH | FDC | Mic | S | P | H, W | S, O. | Ql | ** |
PWA | Thr | Mic | S | P | T | O | Ql | ** |
WAC | FDC, CK | Mic | S | P | B | O | Ql | ** |
SWEAT | FDC | Mic | S | P | P | O | Ql | *** |
IPAQ | FDC | Mic | S | P | H | S, O | Qt, Ql | ** |
PWI | Thr | Mac | S, A | P | W, T | O | Qt | ** |
IPEN | Thr | Mac | S | P | PA, W, T | S, O | Qt | *** |
RSA | FDC, CK | Mic | S, A, P | P, B | W, T | O | Qt | *** |
PLOS | FDC | Mic | S | P, B | W | O | Qt | *** |
GSWI | Thr | Mic | S | P | W | O | Qt | ** |
PEDS | FDC, CK | Mic | S | P | W, B | S, O | Ql | *** |
PEAT | FDC | Mic | S | P, B | W | O | Ql | * |
AA | Thr | Mac | S | P, B | W, T | O | Ql | * |
FSI | Thr | Mac | S | P | W | O | Ql | *** |
PARA | CK | Mac | S, A | P | PA | O | Qt | ** |
AHP | Thr | Mic | S, P, A | P | T, W | O | Ql | * |
UHTS | Thr | Mic | S, A | P, B | T, PA, W | S/O | Ql | * |
PEQI | FDC, CK | Mic | S, A | P | B, W, T | O | Qt | *** |
PARK | FDC | Mic | S, A | P | PA, H | O | Ql | ** |
CUBEST | FDC | Mic | S, A | P, B | PA, W | O | Qt | *** |
PERS | FDC, DDC, CK | Mic | S, A, P | P | W, T | O | Qt, Ql | *** |
V-STEPS | FDC | Mic | S | P, B | W, T | O | Ql | *** |
APARS | S | Mic | S | P | PA | O | Qt | *** |
PANES | Q | Mic | S | P, B | PA, W | S | Ql | ** |
GRAD | Q | Mic | S | P | PA, H | O | Qt | * |
EAPRS | FDC | Mic | A | P | PA | S | Ql | ** |
WSI | DDC | MIc | S | P, B | O | Ql, Qt | ** | |
SAT | CK | Mic | S | P | T | O | Ql | *** |
PSQI | Thr | Mic | S, A | P | PA | O | Ql, Qt | ** |
T-WSI | FDC | Mic | S | P | PA | S | Ql | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragović, D.; Krklješ, M.; Slavković, B.; Aleksić, J.; Radaković, A.; Zećirović, L.; Alcan, M.; Hasanbegović, E. A Literature Review of Parameter-Based Models for Walkability Evaluation. Appl. Sci. 2023, 13, 4408. https://doi.org/10.3390/app13074408
Dragović D, Krklješ M, Slavković B, Aleksić J, Radaković A, Zećirović L, Alcan M, Hasanbegović E. A Literature Review of Parameter-Based Models for Walkability Evaluation. Applied Sciences. 2023; 13(7):4408. https://doi.org/10.3390/app13074408
Chicago/Turabian StyleDragović, Danilo, Milena Krklješ, Branko Slavković, Julija Aleksić, Aleksandar Radaković, Lejla Zećirović, Melisa Alcan, and Enis Hasanbegović. 2023. "A Literature Review of Parameter-Based Models for Walkability Evaluation" Applied Sciences 13, no. 7: 4408. https://doi.org/10.3390/app13074408
APA StyleDragović, D., Krklješ, M., Slavković, B., Aleksić, J., Radaković, A., Zećirović, L., Alcan, M., & Hasanbegović, E. (2023). A Literature Review of Parameter-Based Models for Walkability Evaluation. Applied Sciences, 13(7), 4408. https://doi.org/10.3390/app13074408