An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications
Abstract
1. Introduction
2. UWB Antenna Design Approach
3. UWB Notch Antenna Design Approach
3.1. Progression of UWB Notch Antenna
3.2. Parametric Analysis of UWB Notch Antenna
3.2.1. Effect of Upper Resonator-Width ‘t’
3.2.2. Effect of Lower Resonator-Width ‘x’
4. Discussion and Outcomes
4.1. UWB Antenna Results
4.1.1. VSWR
4.1.2. Current Distribution
4.1.3. Radiation Pattern
4.1.4. Time-Domain Characteristics
4.1.5. Gain
4.2. Outcome of Ultrawideband Notch Antenna
4.2.1. VSWR
4.2.2. Current Distribution
4.2.3. Radiation Pattern
4.2.4. Time-Domain Characteristics
4.2.5. Gain of UWB Notch Antenna
4.2.6. Comparison Table
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federal Communications Commission. First Report and Order on Ultra-Wideband Technology; FCC 02-48; Federal Communications Commission: Washington, DC, USA, 2002. [Google Scholar]
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Vincent, S. Ultrawideband Antennas: Growth and Evolution. Micromachines 2021, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- NXP. NXP Secure UWB Deployed in Samsung Galaxy Note 20 Ultra Bringing the First UWB-Enabled Android Device to Market. Available online: https://www.nxp.com/company/about-nxp/nxp-secure-uwb-deployed-in-samsung-galaxy-note20-ultra-bringing-the-first-uwb-enabled-android-device-to-market:NW-SECURE-UWB-SAMSUNG-GALAXY (accessed on 11 August 2020).
- Kumar, O.P.; Kumar, P.; Ali, T. A Compact Dual-Band Notched UWB Antenna for Wireless Applications. Micromachines 2021, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Cadence. Ultra-Wideband Antenna Applications in Communication Systems. In Cadence System Analysis; 2021; Available online: https://resources.system-analysis.cadence.com/blog/msa2021-ultra-wideband-antenna-applications-in-communication-systems (accessed on 11 August 2020).
- Kumar, P.; Pai, M.M.; Ali, T. Ultrawideband antenna in wireless communication: A review and current state of the art. Telecommun. Radio Eng. 2020, 79, 929–942. [Google Scholar] [CrossRef]
- Kumar, P.; Pathan, S.; Vincent, S.; Kumar, O.P.; Yashwanth, N.; Kumar, P.; Shetty, P.; Ali, T. A Compact Quad-Port UWB MIMO Antenna with Improved Isolation Using a Novel Mesh-Like Decoupling Structure and Unique DGS. IEEE Trans. Circuits Syst. II Express Briefs 2022. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Kumar, O.P.; Vincent, S.; Kumar, P.; Nanjappa, Y.; Pathan, S. An Ultra-Compact 28 GHz Arc-Shaped Millimeter-Wave Antenna for 5G Application. Micromachines 2023, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, O.P.; Kumar, P.; Ali, T. A Novel Arc-shaped UWB Antenna for Wireless Applications. In Proceedings of the 6th International Conference on Green Technology and Sustainable Development(GTSD), Nha Trang City, Vietnam, 29–30 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Kumar, O.P.; Kumar, P.; Ali, T. A Novel Ultrawideband Antenna with Band Notching Facilities at WLAN, C-band, and X-band. In Proceedings of the IEEE 19th India Council International Conference (INDICON), Kochi, India, 24–26 November 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Mahfuz, M.H.; Islam, M.R.; Habaebi, M.H.; Sakib, N.; Hossain, A.Z. A notched UWB microstrip patch antenna for 5G lower and FSS bands. Microw. Opt. Technol. Lett. 2022, 64, 796–802. [Google Scholar] [CrossRef]
- Agarwal, N.; Nidadadvolu, A.; Vincent, S.; Kumar, O.P.; Ali, T. A triple band rectangular shaped patch antenna for GNSS/WiMAX applications. AIP Conf. Proc. 2020, 2297, 020012. [Google Scholar]
- Bharadwaj, A.; Vincent, S.; Ali, T. The Floret Antenna for Terahertz Applications. Optik 2023, 272, 170335. [Google Scholar] [CrossRef]
- Gorai, A.; Pal, M.; Ghatak, R. A Compact fractal-shaped antenna for ultrawideband and bluetooth wireless systems with WLAN rejection functionality. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2163–2166. [Google Scholar] [CrossRef]
- Lakrit, S.; Das, S.; El Alami, A.; Barad, D.; Mohapatra, S. A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications. AEU-Int. J. Electron. Commun. 2019, 105, 106–115. [Google Scholar] [CrossRef]
- Garg, R.K.; Nair, M.V.D.; Singhal, S.; Tomar, R. A miniaturized ultra-wideband antenna using “modified” rectangular patch with rejection in WiMAX and WLAN bands. Microw. Opt. Technol. Lett. 2021, 63, 1271–1277. [Google Scholar] [CrossRef]
- Hosain, M.M.; Kumari, S.; Tiwary, A.K. Sunflower shaped fractal filtenna for WLAN and ARN application. Microw. Opt. Technol. Lett. 2020, 62, 346–354. [Google Scholar] [CrossRef]
- Nan, J.; Zhao, J.Y.; Wang, Y. A Compact Dual Notch-Band Frequency Reconfigurable UWB Monopole Antenna. Prog. Electromagn. Res. M 2021, 106, 215–226. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, A.; Sharma, N. Split Ring Slot Loaded Compact CPW-Fed Printed Monopole Antennas for Ultra-Wideband Applications with Band Notch Characteristics. Prog. Electromagn. Res. C 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Sohail, A.; Alimgeer, K.S.; Iftikhar, A.; Ijaz, B.; Kim, K.W.; Mohyuddin, W. Dual notch band UWB antenna with improved notch characteristics. Microw. Opt. Technol. Lett. 2018, 60, 925–930. [Google Scholar] [CrossRef]
- Pratap Singh, A.; Khanna, R.; Singh, H. UWB antenna with dual notched band for WiMAX and WLAN applications. Microw. Opt. Technol. Lett. 2017, 59, 792–797. [Google Scholar] [CrossRef]
- Kumar, P.; Pathan, S.; Kumar, O.P.; Vincent, S.; Nanjappa, Y.; Kumar, P.; Ali, T. Design of a Six-Port Compact UWB MIMO Antenna with a Distinctive DGS for Improved Isolation. IEEE Access 2022, 10, 112964–112974. [Google Scholar] [CrossRef]
- Yang, B.; Qu, S. A compact integrated Bluetooth UWB dual-band notch antenna for automotive communications. AEU-Int. J. Electron. Commun. 2017, 80, 104–113. [Google Scholar] [CrossRef]
- Jaglan, N.; Kanaujia, B.K.; Gupta, S.D.; Srivastava, S. Design of band-notched antenna with DG-CEBG. Int. J. Electron. 2018, 105, 58–72. [Google Scholar] [CrossRef]
- Chilukuri, S.; Gogikar, S. A CPW fed denim based wearable antenna with dual band-notched characteristics for UWB applications. Prog. Electromagn. Res. C 2019, 94, 233–245. [Google Scholar] [CrossRef]
- Puri, S.C.; Das, S.; Gopal Tiary, M. An UWB trapezoidal rings fractal monopole antenna with dual-notch characteristics. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21777. [Google Scholar] [CrossRef]
- Fertas, K.; Ghanem, F.; Azrar, A.; Aksas, R. UWB antenna with sweeping dual notch based on metamaterial SRR fictive rotation. Microw. Opt. Technol. Lett. 2020, 62, 956–963. [Google Scholar] [CrossRef]
- Puri, S.C.; Das, S.; Tiary, M.G. UWB monopole antenna with dual-band-notched characteristics. Microw. Opt. Technol. Lett. 2020, 62, 1222–1229. [Google Scholar] [CrossRef]
- Sharma, N.; Bhatia, S.S. Design of printed monopole antenna with band notch characteristics for ultra-wideband applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21894. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y. Design of reconfigurable monopole antenna with switchable dual band-notches for UWB applications. Prog. Electromagn. Res. C 2019, 96, 97–107. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Lv, Y.; Xing, H. A practical CPW-fed UWB antenna with reconfigurable dual band-notched characteristics. Prog. Electromagn. Res. M 2019, 81, 117–126. [Google Scholar] [CrossRef]
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
1.25 | |||
32 | 2 | ||
9.5 | 0.5 | ||
6 | 16 | ||
11.6 | 8 | ||
11 | 0.75 | ||
11.25 | 0.75 | ||
4 | 12 | ||
4 | 3 | ||
2.47 | 3 | ||
1.9 | 3.5 | ||
1.5 | 0.5 | ||
1.5 | 0.5 | ||
6 | 0.5 |
Ref. No. & Year | Size (mm2) | Area (mm2) | Notch Frequency Range (GHz) | No. of Notch Frequencies | Band Notch Frequencies (GHz) | Gain (dB) | |
---|---|---|---|---|---|---|---|
f1 | f2 | ||||||
[23], 2017 | 4.97–5.48, 5.69–5.99 | 2 | 5.2 | 5.8 | −4.0–5.0 | ||
[24], 2018 | 3.3–3.6, 5–6 | 2 | 3.56 | 5.4 | 2–8.5 | ||
[25], 2019 | 1720 | 2.3–2.5, 3.3–3.6 | 2 | 2.4 | 3.45 | 1.26–5.5 | |
[26], 2019 | 1296 | 2.5–2.69, 3.3–4.2 | 2 | 2.6 | 3.5 | 1.4–3.5 | |
[27], 2020 | 1200 | 5.5–6.2, 6.6–7.1 | 2 | 5.8 | 6.8 | 2–6 | |
[28], 2020 | 960 | 3.45–4.81, 5.24–6.2 | 2 | 4.4 | 5.8 | 2.7–5.1 | |
[29], 2019 | 900 | 5.1–6, 7.13–7.63 | 2 | 5.4 | 7.4 | 1.1–4.89 | |
[30], 2019 | 875 | 3.3–3.96, 4.7–5.9 | 2 | 3.6 | 5.3 | 2.4–5.5 | |
[31], 2019 | 786 | 5.1–5.9, 7–7.8 | 2 | 5.8 | 7.6 | 2.1–6.6 | |
Proposed work | 768 | 5.2–5.7, 7.2–8.5 | 2 | 5.3 | 8.1 | 0.8–5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, O.P.; Ali, T.; Kumar, P.; Kumar, P.; Anguera, J. An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications. Appl. Sci. 2023, 13, 1310. https://doi.org/10.3390/app13031310
Kumar OP, Ali T, Kumar P, Kumar P, Anguera J. An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications. Applied Sciences. 2023; 13(3):1310. https://doi.org/10.3390/app13031310
Chicago/Turabian StyleKumar, Om Prakash, Tanweer Ali, Pramod Kumar, Pradeep Kumar, and Jaume Anguera. 2023. "An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications" Applied Sciences 13, no. 3: 1310. https://doi.org/10.3390/app13031310
APA StyleKumar, O. P., Ali, T., Kumar, P., Kumar, P., & Anguera, J. (2023). An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications. Applied Sciences, 13(3), 1310. https://doi.org/10.3390/app13031310