Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henrique, M.B., Jr.; Magalhães, A.L.; Bastos, A.M.; Jefferson, M.; Sales, A.; Gouveia, D.X.; Kamshilin, A.A.; da Ferreira, A.C.; de Guimarães, G.F.; Sombra, A.S.B.; et al. Piezoelectric ceramic sensor (PZT) applied to electric current measurements. Microsyst. Technol. 2019, 25, 705–710. [Google Scholar]
- Hu, Z.; Smith, R.C.; Ernstberger, J. The homogenized energy model for characterizing polarization and strains in hysteretic ferroelectric materials: Implementation algorithms and data-driven parameter estimation techniques. J. Intel. Mat. Syst. 2012, 16, 1869–1894. [Google Scholar] [CrossRef]
- Aktas, O.; Kangama, M.; Linyu, G.; Catalan, G.; Ding, X.; Zunger, A.; Salje, E.K.H. Piezoelectricity in nominally centrosymmetric phases. Phys. Rev. Res. 2021, 3, 043221. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; Luo, X.; Fei, C.; Li, D.; Shan, G.; Yang, Y. Recent development and perspectives of optimization design methods for piezoelectric ultrasonic transducers. Micromachines 2021, 12, 779. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, G.; Huang, M. Piezoelectric materials: Properties, advancements, and design strategies for high-temperature applications. Nanomaterials 2022, 12, 1171. [Google Scholar] [CrossRef]
- Dipti, D.; Juneja, J.K.; Singh, S.; Raina, K.K.; Prakash, C. Enhancement in magnetoelectric coupling in PZT based composites. Ceram. Int. 2015, 41, 6108–6112. [Google Scholar] [CrossRef]
- Spaldin, N.A. Multiferroics: Past, present, and future. MRS Bull. 2017, 42, 385–389. [Google Scholar] [CrossRef]
- Bartkowska, J.A.; Ilczuk, J. Microscopic origin of electric and magnetic ordering in BiFeO3. Int. J. Thermophys. 2010, 31, 1–7. [Google Scholar] [CrossRef]
- Bochenek, D.; Skulski, R.; Wawrzała, P.; Brzezińska, D. Dielectric properties of Pb0.75Ba0.25(Zr0.65Ti0.35)1-zSnzO3 ceramics. Ferroelectrics 2011, 418, 82–87. [Google Scholar] [CrossRef]
- Scott, J.F. Multiferroic memories. Nat. Mater. 2007, 6, 256–257. [Google Scholar] [CrossRef]
- Afuye, O.; Li, X.; Guo, F.; Jena, D.; Ralph, D.C.; Molnar, A.; Xing, H.G.; Apsel, A. Modeling and circuit design of associative memories with spin orbit torque FETs. IEEE J. Explor. Solid-State Comput. Dev. Circ. 2019, 5, 197–205. [Google Scholar] [CrossRef]
- Ustinov, A.B.; Kalinikos, B.A. Multiferroic periodic structures based on magnetic crystals for electronically tunable microwave devices. Tech. Phys. Lett. 2014, 7, 568–570. [Google Scholar] [CrossRef]
- Kreisel, J.; Kenzelmann, M. Multiferroics the challenge of coupling magnetism and ferroelectricity. Europhys. News 2009, 40, 17–20. [Google Scholar] [CrossRef]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123–R152. [Google Scholar] [CrossRef]
- Das, J.; Li, M.; Kalarickal, S.S.; Altmannshofer, S.; Buchanan, K.S.; Li, J.F.; Viehland, D. Control of magnetic and electric responses with electric and magnetic fields in magnetoelectric heterostructures. Appl. Phys. Lett. 2010, 96, 222508. [Google Scholar] [CrossRef]
- Yang, G.M.; Lou, J.; Wu, J.; Liu, M.; Wen, G.; Jin, Y.; Sun, N.X. Dual H-and E-field tunable multiferroic bandpass filters with yttrium iron garnet film. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Wu, H.; Tatarenko, A.; Bichurin, M.I.; Wang, Y. A multiferroic module for biomechanical energy harvesting. Nano Energy 2021, 83, 105777. [Google Scholar] [CrossRef]
- Xiang, P.-H.; Dong, X.-L.; Chen, H.; Zhang, Z.; Guo, J.-K. Mechanical and electrical properties of small amount of oxides reinforced PZT ceramics. Ceram. Int. 2003, 29, 499–503. [Google Scholar] [CrossRef]
- Boucher, E.; Guiffard, B.; Lebrun, L.; Guyomar, D. Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn- and (Mn, F)-doped lead zirconate titanate ceramics. Ceram. Int. 2006, 32, 479–485. [Google Scholar] [CrossRef]
- Scott, J.F. Applications of magnetoelectrics. J. Mater. Chem. 2012, 22, 4567–4574. [Google Scholar] [CrossRef]
- Bochenek, D.; Niemiec, P.; Skulski, R.; Adamczyk, M.; Brzezińska, D. Electrophysical properties of the multicomponent PBZT-type ceramics doped by Sn4+. J. Electroceram. 2019, 42, 17–30. [Google Scholar] [CrossRef]
- Brzezińska, D.; Skulski, R.; Bochenek, D.; Niemiec, P. The properties of (1-x)(0.5PZT-0.5PFW)-xPFN ceramics. Integr. Ferroelectr. 2016, 173, 104–112. [Google Scholar] [CrossRef]
- Venkata Ramana, M.; Roopas Kiranc, S.; Ramamanohar Reddy, N.; Siva Kumar, K.V.; Murthy, V.R.K.; Murty, B.S. Investigation and characterization of Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods. Mater. Chem. Phys. 2011, 126, 295–300. [Google Scholar] [CrossRef]
- Maiwa, H.; Kimura, O.; Shoji, K.; Ochiai, H. Low temperature sintering of PZT ceramics without additives via an ordinary ceramic route. J. Eur. Ceram. Soc. 2005, 25, 2383–2385. [Google Scholar] [CrossRef]
- Xu, Z.J.; Chu, R.Q.; Li, G.R.; Shao, X.; Yin, Q.R. Preparation of PZT powders and ceramics via a hybrid method of sol–gel and ultrasonic atomization. Mater. Sci. Eng. B 2005, 117, 113–118. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.; Fan, B.; Zhang, G. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008) (Zr0.65Sn0.3Ti0.05)O3–(Pb0.97La0.02) (Zr0.9Sn0.05Ti0.05)O3 anti–ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloys Compd. 2015, 622, 162–165. [Google Scholar] [CrossRef]
- Prasatkhetragarn, A.; Yimnirun, R. Phase formation, electrical properties and morphotropic phase boundary of 0.95Pb(ZrxTi1-x)O3–0.05Pb(Mn1/3Nb2/3)O3 ceramics. Ceram. Int. 2013, 39, S91–S95. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q. Effects of Cr2O3 doping on the electrical properties and the temperature stabilities of PZT binary piezoelectric ceramics. Rare Met. 2008, 27, 362–366. [Google Scholar] [CrossRef]
- Shung, K.K.; Cannata, J.M.; Zhou, Q.F. Piezoelectric materials for high frequency medical imaging applications: A review. J. Electroceram. 2007, 19, 141–147. [Google Scholar] [CrossRef]
- Venkata Ramana, M.; Ramamanohar Reddy, N.; Siva Kumar, K.V.; Murthy, V.R.K.; Murty, B.S. Magneto-electric effect in multiferroic Ni0.93Co0.02Mn0.05Fe1.95O4−/PbZr0.52Ti0.48O3 particulate composites: Dielectric, piezoelectric properties. Mod. Phys. Lett. B 2011, 25, 345–358. [Google Scholar] [CrossRef]
- Zhang, H.; Mak, C.-L. Impedance spectroscopic characterization of fine-grained magnetoelectric Pb(Zr0.53Ti0.47)O3–(Ni0.5Zn0.5)Fe2O4 ceramic composites. J. Alloys Compd. 2012, 513, 165–171. [Google Scholar] [CrossRef]
- Němec, P.; Fiebig, M.; Kampfrath, T.; Kimel, A.V. Antiferromagnetic opto-spintronics. Nat. Phys. 2018, 14, 229–241. [Google Scholar] [CrossRef]
- Hrib, L.M.; Caltun, O.F. Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite–barium titanate composites. J. Alloys Compd. 2011, 509, 6644–6648. [Google Scholar] [CrossRef]
- Bochenek, D.; Zachariasz, R.; Niemiec, P.; Bartkowska, J.; Brzezińska, D. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics. Mech. Syst. Signal Process. 2016, 78, 84–90. [Google Scholar] [CrossRef]
- Penchal Reddy, M.; Madhuri, W.; Venkata Ramana, M.; Ramamanohar Reddy, N.; Siva Kumar, K.V.; Murthy, V.R.K.; Siva Kumar, K.; Ramakrishna Reddy, R. Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 2010, 322, 2819–2825. [Google Scholar] [CrossRef]
- Penchal Reddy, M.; Madhuri, W.; Ramamanohar Reddy, N.; Siva Kumar, K.V.; Murthy, V.R.K.; Ramakrishna Reddy, R. Magnetic properties of Ni-Zn ferrites prepared by microwave sintering method. J. Electroceram. 2012, 28, 1–9. [Google Scholar] [CrossRef]
- Bochenek, D.; Niemiec, P.; Chrobak, A. Effect of chemical composition on magnetic and electrical properties of ferroelectromagnetic ceramic composites. Materials 2021, 14, 2488. [Google Scholar] [CrossRef]
- Ciomaga, C.E.; Avadanei, O.G.; Dumitru, I.; Airimioaei, M.; Tascu, S.; Tufescu, F.; Mitoseriu, L. Engineering magnetoelectric composites towards application as tunable microwave filters. J. Phys. D Appl. Phys. 2016, 49, 125002. [Google Scholar] [CrossRef]
- Atif, M.; Ahmed, S.; Nadeem, M.; Nasir Khan, M. Complex dielectric and impedance analysis in a relaxor type ferroelec-tric/ferrimagnetic magnetoelectric (0.5)PbZr0.52Ti0.48O3+(0.5)CoFe2O4 composite. J. Alloys Compd. 2018, 735, 880–889. [Google Scholar] [CrossRef]
- Hannachi, E.; Sayyed, M.I.; Slimani, Y.; Almessiere, M.A.; Baykal, A.; Elsafi, M. Synthesis, characterization, and performance as-sessment of new composite ceramics towards radiation shielding applications. J. Alloys Compd. 2022, 899, 163173. [Google Scholar] [CrossRef]
- Wu, H.; Xu, R.; Zhou, C.; Xing, S.; Zeng, Z.; Ao, H.; Li, W.; Qin, X.; Gao, R. Effect of core size on the magnetoelectric properties of Cu0.8Co0.2Fe2O4@Ba0.8Sr0.2TiO3 ceramics. J. Phys. Chem. Solids 2022, 160, 110314. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Xu, Z.; Wang, Z.; Chen, G.; Deng, X.; Fu, C.; Cai, W. A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. Part B-Eng. 2019, 166, 204–212. [Google Scholar] [CrossRef]
- Mane, S.M.; Nimbalkar, A.R.; Kim, H.; Kulkarni, S.B.; Tayade, N.T.; Thombare, J.V.; Dhasade, S.S.; Shin, J.C. Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering. J. Alloys Compd. 2020, 849, 156599. [Google Scholar] [CrossRef]
- Mao, C.; Yan, S.; Cao, S.; Yao, C.; Cao, F.; Wang, G.; Dong, X.; Hu, X.; Yang, C. Effect of grain size on phase transition, dielectric and pyroelectric propertiesof BST ceramics. J. Eur. Ceram. Soc. 2014, 34, 2933–2939. [Google Scholar] [CrossRef]
- Bobić, J.D.; Ivanov, M.; Ilić, N.I.; Dzunuzović, A.S.; Vijatović Petrović, M.M.; Banys, J.; Ribic, A.; Despotovic, Z.; Stojanovic, B.D. PZT-nickel ferrite and PZT-cobalt ferrite comparative study: Structural, dielectric, ferroelectric and magnetic properties of composite ceramics. Ceram. Int. 2018, 44, 6551–6557. [Google Scholar] [CrossRef]
- Nayak, P.; Badapanda, T.; Kumar Singh, A.; Panigrahi, S. An approach for correlating the structural and electrical properties of Zr4+-modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 2017, 7, 16319–16331. [Google Scholar] [CrossRef]
- Li, M.; Sinclair, D.C.; West, A.R. Extrinsic origins of the apparent relaxor like behavior in CaCu3Ti4O12 ceramics at high temperatures: A cautionary tale. J. Appl. Phys. 2011, 109, 084106. [Google Scholar] [CrossRef]
- Irvine, J.T.; Sinclair, D.C.; West, A.R. Electroceramics: Characterization by impedance spectroscopy. Adv. Mat. 1990, 2, 132–138. [Google Scholar] [CrossRef]
- Zhang, M.F.; Wang, Y.; Wang, K.F.; Zhu, J.S.; Liu, J.M. Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics. J. Appl. Phys. 2009, 105, 061639. [Google Scholar] [CrossRef]
- Kang, B.S.; Choi, S.K.; Park, C.H. Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C. J. Appl. Phys. 2003, 9, 1904–1911. [Google Scholar] [CrossRef]
- Elissalde, C.; Ravez, J. Ferroelectric ceramics: Defects and dielectric relaxations. J. Mater. Chem. 2001, 11, 1957–1967. [Google Scholar] [CrossRef]
- Li, Z.; Fan, H. Polaron relaxation associated with the localized oxygen vacancies in Ba0.85Sr0.15TiO3 ceramics at high temperatures. J. Appl. Phys. 2009, 106, 054102. [Google Scholar] [CrossRef]
- Lvovich, V.F. Impedance Spectroscopy, Applications to Electrochemical and Dielectric Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wu, J.; Wang, J. Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. J. Am. Ceram. Soc. 2010, 93, 2795–2803. [Google Scholar] [CrossRef]
- Chang, B.Y.; Park, S.M. Electrochemical impedance spectroscopy. Ann. Rev. Anal. Chem. 2010, 3, 207. [Google Scholar] [CrossRef] [PubMed]
- Akkopru-Akgun, B.; Marincel, D.M.; Tsuji, K.; Bayer, T.J.M.; Randall, C.A.; Lanagan, M.T.; Trolier-McKinstry, S. Thermally stimulated depolarization current measurements on degraded lead zirconate titanate films. J. Am. Ceram. Soc. 2021, 104, 5270–5280. [Google Scholar] [CrossRef]
P20-F80 | P40-F60 | P60-F40 | P80-F20 | P85-F15 | P90-F10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t (%) | ex (%) | t (%) | ex (%) | t (%) | ex (%) | t (%) | ex (%) | t (%) | ex (%) | t (%) | ex (%) | |
TiO2 | 3.065 | 2.44 | 5.746 | 5.34 | 8.109 | 8.05 | 10.208 | 10.07 | 10.697 | 10.47 | 11.173 | 10.92 |
MnO2 | 0.007 | 0.09 | 0.013 | 0.12 | 0.018 | 0.15 | 0.023 | 0.17 | 0.024 | 0.12 | 0.025 | 0.17 |
Fe2O3 | 50.133 | 55.05 | 35.238 | 39.35 | 22.103 | 21.93 | 10.435 | 10.13 | 7.718 | 7.63 | 5.076 | 4.91 |
NiO | 11.725 | 13 | 8.241 | 10.87 | 5.169 | 5.08 | 2.440 | 2.31 | 1.805 | 1.85 | 1.187 | 1.13 |
ZnO | 12.779 | 13.6 | 8.982 | 11.05 | 5.634 | 5.78 | 2.660 | 2.63 | 1.967 | 1.78 | 1.294 | 1.08 |
ZrO2 | 4.923 | 2.85 | 9.227 | 7.03 | 13.022 | 12.95 | 16.393 | 16.23 | 17.178 | 16.85 | 17.942 | 17.58 |
Nb2O5 | 0.010 | 0.26 | 0.020 | 0.31 | 0.028 | 0.77 | 0.035 | 0.97 | 0.036 | 1.01 | 0.038 | 1.02 |
PbO | 16.993 | 12.34 | 31.850 | 25.39 | 44.951 | 44.27 | 56.590 | 56.39 | 59.299 | 58.97 | 61.935 | 61.42 |
Bi2O3 | 0.366 | 0.37 | 0.685 | 0.54 | 0.967 | 1.020 | 1.218 | 1.10 | 1.276 | 1.32 | 1.333 | 1.77 |
Composition | ER1 for I Peak | ER2 for II Peak |
---|---|---|
P20-F80 | 0.18 ± 0.1 eV | 0.17 ± 0.1 eV |
P40-F60 | 0.16 ± 0.1 eV | 0.15 ± 0.1 eV |
P60-F40 | 0.18 ± 0.1 eV | 0.17 ± 0.1 eV |
P80-F20 | 0.17 ± 0.1 eV | - |
P85-F15 | 0.15 ± 0.1 eV | - |
P90-F10 | 0.16 ± 0.1 eV | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozielski, L.; Bochenek, D.; Clemens, F.; Sebastian, T. Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications. Appl. Sci. 2023, 13, 8854. https://doi.org/10.3390/app13158854
Kozielski L, Bochenek D, Clemens F, Sebastian T. Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications. Applied Sciences. 2023; 13(15):8854. https://doi.org/10.3390/app13158854
Chicago/Turabian StyleKozielski, Lucjan, Dariusz Bochenek, Frank Clemens, and Tutu Sebastian. 2023. "Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications" Applied Sciences 13, no. 15: 8854. https://doi.org/10.3390/app13158854
APA StyleKozielski, L., Bochenek, D., Clemens, F., & Sebastian, T. (2023). Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications. Applied Sciences, 13(15), 8854. https://doi.org/10.3390/app13158854