Research on Calibration Method of Line-Structured Light Based on Multiple Geometric Constraints
Abstract
1. Introduction
2. The Light Calibration Method for Line Structure based on Multiple Geometric Constraints
2.1. Preliminary Solution of Light Plane Equation Parameters
2.2. Screening of Error Points According to Calibration Point Dependency
2.3. The Optimization of Light Plane Equation Parameters with Multiple Parallel Geometric Constraints
3. The Evaluation Experiment and Analysis
3.1. Camera Calibration and Initial Parameter Solution
3.2. Evaluation Experiment of Calibration Method with Multiple Geometric Constraints and Result Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Siyuan, L.; Tan, Q.; Zhang, Y. Shaft diameter measurement using structured light vision. Sensors 2015, 15, 19750–19767. [Google Scholar]
- Miao, J.; Tan, Q.; Wang, S.; Liu, S.; Chai, B.; Li, X. A Vision Measurement Method for the Gear Shaft Radial Runout With Line Structured Light. IEEE Access 2020, 9, 5097–5104. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Wang, K.; Zhou, L. Research on a Handheld 3D Laser Scanning System for Measuring Large-Sized Objects. Sensors 2018, 18, 3567. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, H.; Huang, Y.; Zheng, D.; Bai, L.; Han, J. Three-dimensional shape measurement technique for large-scale objects based on line structured light combined with industrial robot. OPTIK 2020, 202, 163656. [Google Scholar] [CrossRef]
- Tsai, R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef][Green Version]
- Weng, J.; Cohen, P.; Herniou, M. Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 965–980. [Google Scholar] [CrossRef][Green Version]
- Liu, S.; Zhang, Y.; Zhang, Y.; Shao, T.; Yuan, M. Research on 3D measurement model by line structure light vision. Eurasip J. Image Video Process. 2018, 2018, 88. [Google Scholar] [CrossRef][Green Version]
- Lu, X.; Wu, Q.; Huang, H. Calibration based on ray-tracing for multi-line structured light projection system. Opt. Express 2019, 27, 35884–35894. [Google Scholar] [CrossRef]
- Yang, S.; Yang, T.; Wu, G.; Wu, Y.; Liu, F. Flexible and fast calibration method for uni-directional multi-line structured light system. Opt. Lasers Eng. 2023, 164, 107525. [Google Scholar] [CrossRef]
- Huynh, D.Q.; Owens, R.A.; Hartmann, P.E. Calibrating a structured light stripe system: A novel approach. Int. J. Comput. Vis. 1999, 33, 73–86. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, G.; Xu, Y. Calibration approach for structured-light-stripevision sensor based on the invariance of double cross-ratio. Opt. Eng. 2003, 42, 2956–2966. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, G.; Jiang, J. Constructing feature points for calibrating a structured light vision sensor by viewing a plane from unknown orientations. Opt. Lasers Eng. 2005, 43, 1056–1070. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, G. Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations. Image Vis. Comput. 2005, 23, 59–67. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Tan, Q.; Zhang, W. New method of cylindricity measurement based on structured light vision technology. J. Jilin Univ. 2017, 47, 524–529. [Google Scholar]
- Liu, Z.; Li, X.; Li, F.; Zhang, G. Calibration method for line-structured light vision sensor based on a single ball target. Opt. Lasers Eng. 2015, 69, 20–28. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Zhang, H. Light plane calibration and accuracy analysis for multi-line structured light vision measurement system. Optik 2020, 207, 163882. [Google Scholar] [CrossRef]
- Bleier, M.; Nüchter, A. Low-cost 3d laser scanning in air or water using self-calibrating structured light. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 105. [Google Scholar] [CrossRef][Green Version]
- Chen, T.; Sun, L.; Zhang, Q.; Wu, X.; Wu, D. Field geometric calibration method for line structured light sensor using single circular target. Sci. Program. 2017, 2017, 1526706. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Xu, X.; Liu, S. Research on the Algorithm of Structure Light Calibration Based on Vertical Constraint. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 459–463. [Google Scholar]
- Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 20, 113–125. [Google Scholar] [CrossRef][Green Version]
- Gellert, W.; Hellwich, M.; Kästner, H.; Küstner, H. The VNR Concise Encyclopedia of Mathematics; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [Google Scholar]
Equipment Name | Model | Main Parameters |
---|---|---|
Camera | MER-125-30UM | Resolution: 1292 × 964 pixel |
Lens | Computer M2514-MP | Focal length: 25 mm |
Laser | LH650-80-3 | Power: 0~20 mW |
Light source | CCS LFL-200 | Luminous area: 200 × 180 mm |
Checkerboard calibration board | NANO CBC 25mm-2.0 | Manufacturing accuracy: ±1.0 μm |
α | β | γ | u0 | v0 | k1 | k2 | p1 | p2 |
---|---|---|---|---|---|---|---|---|
6884.70 | 6885.044 | 0.835078 | 628.1419 | 470.1564 | 0.146356 | 1.580898 | 0.000322 | 0.000299 |
Corresponding Position of the Laser | Light Plane Equation |
---|---|
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
Corresponding Position of the Laser | Light Plane Equation |
---|---|
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
Standard Gauge Block Thickness | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
3 | 0.043 | 0.031 | 0.029 | 0.028 | 0.023 | 0.024 | 0.027 | 0.025 | 0.031 | 0.029 |
4 | 0.040 | 0.035 | 0.034 | 0.030 | 0.027 | 0.029 | 0.029 | 0.029 | 0.027 | 0.029 |
5 | 0.034 | 0.032 | 0.026 | 0.025 | 0.025 | 0.029 | 0.027 | 0.030 | 0.029 | 0.024 |
6 | 0.042 | 0.038 | 0.025 | 0.029 | 0.021 | 0.023 | 0.030 | 0.033 | 0.030 | 0.029 |
8 | 0.039 | 0.033 | 0.029 | 0.021 | 0.023 | 0.021 | 0.029 | 0.025 | 0.027 | 0.025 |
10 | 0.046 | 0.039 | 0.027 | 0.029 | 0.027 | 0.030 | 0.032 | 0.030 | 0.028 | 0.028 |
Mean error | 0.041 | 0.035 | 0.028 | 0.027 | 0.024 | 0.026 | 0.029 | 0.029 | 0.029 | 0.027 |
Gauge Block Thickness | Method A | Method B | Method C |
---|---|---|---|
3 | 0.043 | 0.028 | 0.023 |
4 | 0.040 | 0.020 | 0.027 |
5 | 0.034 | 0.021 | 0.025 |
6 | 0.042 | 0.015 | 0.021 |
8 | 0.039 | 0.025 | 0.023 |
10 | 0.046 | 0.015 | 0.027 |
Mean error | 0.041 | 0.021 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Xu, X.; Ren, Z.; Liu, S. Research on Calibration Method of Line-Structured Light Based on Multiple Geometric Constraints. Appl. Sci. 2023, 13, 5998. https://doi.org/10.3390/app13105998
Li C, Xu X, Ren Z, Liu S. Research on Calibration Method of Line-Structured Light Based on Multiple Geometric Constraints. Applied Sciences. 2023; 13(10):5998. https://doi.org/10.3390/app13105998
Chicago/Turabian StyleLi, Chunfeng, Xiping Xu, Zhen Ren, and Siyuan Liu. 2023. "Research on Calibration Method of Line-Structured Light Based on Multiple Geometric Constraints" Applied Sciences 13, no. 10: 5998. https://doi.org/10.3390/app13105998
APA StyleLi, C., Xu, X., Ren, Z., & Liu, S. (2023). Research on Calibration Method of Line-Structured Light Based on Multiple Geometric Constraints. Applied Sciences, 13(10), 5998. https://doi.org/10.3390/app13105998