Facial Soft Tissue Thickness Values for Romanian Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Study Sample, Criteria for Inclusion and Exclusion
2.2. Recording Information in the Database
2.3. Working Methodology
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stephan, C.N.; Preisler, R. In vivo facial soft tissue thicknesses of adult Australians. Forensic Sci. Int. 2018, 282, e1–e220. [Google Scholar] [CrossRef] [PubMed]
- Diac, M.M.; Earar, K.; Damian, S.I.; Knieling, A.; Iov, T.; Shrimpton, S.; Castaneyra-Ruiz, M.; Wilkinson, C.; Bulgaru Iliescu, D. Facial reconstruction: Anthropometric studies regarding the morphology of the nose for Romanian adult population I: Nose width. Appl. Sci. 2020, 10, 6479. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, V.; Vij, H.; Vij, R.; Tyagi, N. Forensic Facial Reconstruction: The final frontier. J. Clin. Diagn. Res. 2015, 9, 26–28. [Google Scholar] [CrossRef]
- Wilkinson, C. Computerized Forensic Facial Reconstruction a Review of Current Systems. Forensic Sci. Med. Pathol. 2005, 1, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Verze, L. History of facial reconstruction. Acta Biomed. 2009, 80, 5–12. [Google Scholar]
- Wilkinson, C. Forensic Facial Reconstruction; Cambridge University Press: New York, NY, USA, 2004; pp. 6–27. [Google Scholar]
- Vezzetti, E.; Marcolin, F.; Tornincasa, S.; Moos, S.; Grazia Violante, M.; Dagnes, N.; Monno, G.; Uva, A.E.; Fiorentino, M. Facial Landmarks for Forensic Skull-Based 3D Face Reconstruction: A Literature Review. In Augmented Reality, Virtual Reality and Computer Graphics; De Paolis, L., Mongelli, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9768, pp. 1–35. [Google Scholar]
- Pithon, M.M.; Debora Lais, R.R.; Leite de Santana, C.; Pedrosa Cruz, J.P. Soft tissue thickness in young north eastern Brazilian individuals with different skeletal classes. J. Forensic Leg. Med. 2014, 22, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Codinha, S. Facial soft tissue thicknesses for the Portuguese adult population. Forensic Sci. Int. 2009, 184, 80.e1–80.e7. [Google Scholar] [CrossRef]
- Kotrashetti, V.S.; Mallapur, M.D. Radiographic assessment of facial soft tissue thickness in South Indian population—An anthropologic study. J. Forensic Leg. Med. 2016, 39, 161–168. [Google Scholar] [CrossRef]
- Domaraki, M.; Stephan, C.N. Facial soft tissue thicknesses in Australian adult cadavers. J. Forensic Sci. 2006, 51, 5–10. [Google Scholar] [CrossRef]
- Guyomarc’h, P.; Santos, F.; Dutailly, B.; Coqueugniot, H. Facial soft tissue depths in French adults: Variability, specificity and estimation. Forensic Sci. Int. 2013, 231, e1–e411. [Google Scholar] [CrossRef]
- Rhine, J.S.; Campbell, H.R. Thicknesses of facial tissues in American blacks. J. Forensic Sci. 1980, 25, 847–858. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. “R: A Language and Environment for Statistical Computing”. Vienna, Austria: R Foundation for Statistical Computing. R Version 4.2.2. Available online: https://www.R-project.org (accessed on 10 December 2022).
- Whickham, H.; Averick, M.; Bryan, J.; Chang, L.; McGowan D’Agostino, L.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Sjoberg, D.D.; Whiting, K.; Curry, M.; Lavery, J.A.; Larmarange, J. Reproducible summary tables with the gtsummary package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Gohel, D.; Skintzos, P. Flextable: Functions for Tabular Reporting. R Package Version 0.8.3. 2022. Available online: https://CRAN.R-project.org/package=flextable (accessed on 3 April 2023).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 3 April 2023).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Phillis, V.M.; Smuts, N.A. Facial reconstruction: Utilization of computerized tomography to measure facial tissue thickness in a mixed racial population. Forensic Sci. Int. 1996, 83, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Haddad de Almeida, N.; Michel-Crosato, E.; Saavedra de Paiva, L.A.; Haye Biazevic, M.G. Facial soft tissue thickness in the Brazilian population: New reference data and anatomical landmarks. Forensic Sci. Int. 2013, 231, e1–e404. [Google Scholar] [CrossRef]
- Stephan, C.N.; Sievwright, E. Facial soft tissue thickness (FSTT) estimation models-and the strength of correlations between craniometric dimensions and FSTTs. Forensic Sci. Int. 2018, 286, 128–140. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Yu, Y.; Qiang, Y.; Liu, M.; Fulton, D.; Chen, T. Age and sex related measurement of craniofacial soft tissue thickness and nasal profile in the Chinese population. Forensic Sci. Int. 2011, 212, e1–e272. [Google Scholar] [CrossRef]
- Zhuang, Z.; Landsittel, D.; Benson, S.; Roberge, R.; Shaffer, R. Facial anthropometric differences among gender, ethnicity and age groups. Ann. Occup. Hyg. 2010, 54, 391–402. [Google Scholar]
- Simpson, E.; Henneberg, M. Variation in soft-tissue thicknesses on the human face and their relation to craniometric dimensions. Am. J. Psys. Anthropol. 2002, 118, 121–133. [Google Scholar] [CrossRef]
- Bulut, O.; Sipahioglu, S.; Hekimoglu, B. Facial soft tissue thicknesses database for craniofacial reconstruction in the Turkish adult population. Forensic Sci. Int. 2014, 242, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Stephan, C.N.; Meikle, B.; Freudenstein, N.; Taylor, R.; Claes, P. Facial soft tissue thicknesses in craniofacial identification: Data collection protocols and associated measurement errors. Forensic Sci. Int. 2019, 304, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.R.N. Bizygomatic diameter: The thickness of the soft tissue tissues over the zygions. Am. J. Phys. Anthropol. 1969, 30, 303–310. [Google Scholar] [CrossRef] [PubMed]
Anatomical Landmarks | Description |
---|---|
Midline landmarks | |
1. Supraglabella | The most anterior point of the forehead, above the glabella în the mid-sagital plane |
2. Glabella | The most proeminent point between the supraorbital ridges în the mid-sagital plane |
3. Nasion | Midpoint of the frontonasal suture |
4. Rhinion | The midpoint of the internasal suture on its most inferior and anterior portion |
5. Mid-philtrum | The lowest point of the interior margin of the pyrifom aperture at the base of the nasal spine projected onto the sagittal plane |
6. Supramental | Centred in the fold of chin |
7. Pogonion | The most proeminent point in the midline of the mental protuberance |
8. Gnation | Most inferior point of the mandible in the midsagital plane |
Bilateral landmarks | |
9. Supraorbital l_mid-supraorbital (left) r_mid-supraorbital (right) | Centre upper part of the margin of the orbit |
10. Infraorbital l_mid-infraorbital r_mid-infraorbital | Centre lower part of the margin of the orbit |
11. mid-zygomatic l_mid-zygomatic r_mid-zygomatic | Perpendicular point to the lateral orbit border, centred between the lower border of the orbit and the lower portion of the zygomatic process |
12. zygion l_zygion (left) r_zygion (right) | The most lateral point of the zygomatic arch |
Variable | Statistic | Overall, N = 100 | Female, N = 42 | Male, N = 58 | p-Value 1 |
---|---|---|---|---|---|
age_years | Median (IQR) | 52 (42, 65) | 54 (38, 67) | 52 (42, 59) | 0.4 |
height_mm | Median (IQR) | 168 (165, 176) | 165 (160, 167) | 174 (168, 178) | <0.001 |
weight_category | 0.4 | ||||
a.Underweight | n (%) | 50 (50%) | 21 (50%) | 29 (50%) | |
b.Normal weight | n (%) | 42 (42%) | 16 (38%) | 26 (45%) | |
c.Overweight | n (%) | 8 (8.0%) | 5 (12%) | 3 (5.2%) | |
supraglabella | Median (IQR) | 2.80 (2.00, 3.00) | 2.80 (2.15, 3.00) | 2.75 (2.00, 3.00) | 0.3 |
glabella | Median (IQR) | 3.10 (2.80, 3.30) | 3.10 (2.73, 3.20) | 3.10 (2.92, 3.30) | 0.7 |
nasion | Median (IQR) | 3.15 (2.77, 3.92) | 3.00 (2.62, 3.50) | 3.40 (2.92, 4.00) | 0.030 |
rhinion | Median (IQR) | 2.00 (1.88, 2.50) | 2.10 (1.83, 2.58) | 2.00 (1.90, 2.50) | 0.5 |
mid_philtrum | Median (IQR) | 5.00 (4.25, 5.60) | 5.20 (5.00, 5.40) | 4.80 (4.00, 5.60) | 0.11 |
supra_mentale | Median (IQR) | 5.60 (4.27, 7.00) | 6.00 (4.20, 6.50) | 5.60 (4.53, 7.07) | 0.8 |
pogonion | Median (IQR) | 4.00 (3.10, 5.45) | 4.60 (3.18, 5.60) | 3.50 (3.10, 5.00) | 0.4 |
gnathion | Median (IQR) | 3.40 (2.80, 4.30) | 4.05 (2.85, 4.60) | 3.05 (2.73, 3.90) | 0.11 |
l_mid_supraorbital | Median (IQR) | 3.00 (2.80, 3.50) | 3.00 (2.80, 3.98) | 3.00 (2.90, 3.50) | 0.7 |
l_mid_infraorbital | Median (IQR) | 2.50 (2.10, 2.90) | 2.40 (2.10, 2.90) | 2.55 (2.30, 3.00) | 0.4 |
l_zygion | Median (IQR) | 3.10 (3.00, 3.53) | 3.10 (3.00, 4.00) | 3.10 (2.92, 3.50) | 0.3 |
r_mid_supraorbital | Median (IQR) | 3.00 (2.50, 3.10) | 3.00 (2.50, 3.62) | 2.90 (2.50, 3.10) | 0.5 |
r_mid_infraorbital | Median (IQR) | 2.55 (2.08, 2.80) | 2.50 (2.00, 2.80) | 2.60 (2.10, 2.80) | 0.8 |
r_zygion | Median (IQR) | 3.10 (2.90, 3.70) | 3.20 (3.00, 3.60) | 3.00 (2.83, 4.00) | 0.2 |
l_mid_zigomatic | Median (IQR) | 3.10 (2.80, 3.90) | 3.15 (3.00, 4.00) | 3.10 (2.50, 3.60) | 0.057 |
r_mid_zigomatic | Median (IQR) | 3.10 (3.00, 3.60) | 3.10 (2.62, 3.80) | 3.10 (3.00, 3.60) | 0.6 |
Weight Category | ||||||
---|---|---|---|---|---|---|
Variable | Statistic | Overall, N = 100 | a.Underweight, N = 50 | b.Normal weight, N = 42 | c.Overweight, N = 8 | p-Value 1 |
age_years | Median (IQR) | 52 (42, 65) | 52 (42, 65) | 52 (45, 58) | 67 (22, 67) | 0.8 |
sex | 0.4 | |||||
Female | n (%) | 42 (42%) | 21 (42%) | 16 (38%) | 5 (62%) | |
Male | n (%) | 58 (58%) | 29 (58%) | 26 (62%) | 3 (38%) | |
height_mm | Median (IQR) | 168 (165, 176) | 168 (165, 176) | 168 (166, 176) | 162 (159, 185) | 0.7 |
supraglabella | Median (IQR) | 2.80 (2.00, 3.00) | 2.45 (2.00, 2.98) | 2.80 (2.30, 3.10) | 3.60 (2.80, 4.30) | 0.002 |
glabella | Median (IQR) | 3.10 (2.80, 3.30) | 3.10 (2.60, 3.45) | 3.00 (3.00, 3.18) | 3.70 (3.10, 4.20) | 0.038 |
nasion | Median (IQR) | 3.15 (2.77, 3.92) | 3.50 (2.92, 4.38) | 3.00 (2.70, 3.20) | 4.10 (3.20, 5.00) | <0.001 |
rhinion | Median (IQR) | 2.00 (1.88, 2.50) | 1.90 (1.80, 2.22) | 2.25 (2.00, 2.60) | 2.20 (1.90, 2.40) | 0.001 |
mid_philtrum | Median (IQR) | 5.00 (4.25, 5.60) | 5.00 (3.92, 5.80) | 5.20 (4.70, 5.40) | 5.30 (5.00, 5.60) | 0.3 |
supra_mentale | Median (IQR) | 5.60 (4.27, 7.00) | 5.00 (4.32, 6.38) | 6.00 (3.62, 7.00) | 6.95 (5.60, 9.10) | 0.051 |
pogonion | Median (IQR) | 4.00 (3.10, 5.45) | 3.75 (3.00, 5.30) | 4.00 (3.10, 5.80) | 4.20 (4.00, 4.20) | 0.6 |
gnathion | Median (IQR) | 3.40 (2.80, 4.30) | 3.00 (2.60, 4.10) | 3.15 (2.83, 4.12) | 5.35 (5.10, 5.60) | <0.001 |
l_mid_supraorbital | Median (IQR) | 3.00 (2.80, 3.50) | 3.00 (2.90, 3.80) | 3.00 (2.80, 3.20) | 8.95 (2.10, 13.80) | 0.2 |
l_mid_infraorbital | Median (IQR) | 2.50 (2.10, 2.90) | 2.40 (2.10, 2.77) | 2.70 (2.35, 2.90) | 4.60 (1.90, 7.00) | 0.11 |
l_zygion | Median (IQR) | 3.10 (3.00, 3.53) | 3.10 (3.00, 3.50) | 3.00 (2.90, 3.48) | 4.05 (3.00, 5.00) | 0.061 |
r_mid_supraorbital | Median (IQR) | 3.00 (2.50, 3.10) | 2.80 (2.50, 3.10) | 3.00 (2.70, 3.10) | 3.95 (2.10, 4.80) | 0.4 |
r_mid_infraorbital | Median (IQR) | 2.55 (2.08, 2.80) | 2.30 (1.90, 2.80) | 2.50 (2.40, 2.77) | 4.90 (2.70, 7.00) | 0.002 |
r_zygion | Median (IQR) | 3.10 (2.90, 3.70) | 3.10 (2.90, 3.50) | 3.00 (2.62, 4.00) | 4.10 (2.10, 5.00) | 0.5 |
l_mid_zigomatic | Median (IQR) | 3.10 (2.80, 3.90) | 3.05 (2.50, 3.50) | 3.10 (3.00, 3.90) | 6.40 (3.10, 8.00) | 0.003 |
r_mid_zigomatic | Median (IQR) | 3.10 (3.00, 3.60) | 3.10 (3.00, 3.50) | 3.10 (2.62, 3.75) | 4.55 (3.10, 6.00) | 0.2 |
x | y | corr_overall | corr_females | corr_males | ratio_ls |
---|---|---|---|---|---|
pogonion | supra_mentale | 0.72 | 0.75 | 0.72 | 1.042 |
mid_philtrum | supra_mentale | 0.71 | 0.70 | 0.71 | 1.014 |
l_zygion | r_zygion | 0.68 | 0.80 | 0.62 | 1.290 |
r_mid_infraorbital | r_mid_supraorbital | 0.68 | 0.82 | 0.58 | 1.414 |
r_mid_infraorbital | supraglabella | 0.64 | 0.86 | 0.51 | 1.686 |
glabella | l_mid_supraorbital | 0.63 | 0.79 | 0.51 | 1.549 |
glabella | r_mid_infraorbital | 0.63 | 0.71 | 0.59 | 1.203 |
mid_philtrum | pogonion | 0.62 | 0.75 | 0.55 | 1.364 |
gnathion | mid_philtrum | 0.62 | 0.35 | 0.68 | 1.943 |
l_mid_zigomatic | mid_philtrum | 0.59 | 0.48 | 0.55 | 1.146 |
gnathion | l_mid_zigomatic | 0.59 | 0.69 | 0.40 | 1.725 |
glabella | l_mid_zigomatic | 0.58 | 0.74 | 0.47 | 1.574 |
gnathion | supra_mentale | 0.58 | 0.36 | 0.69 | 1.917 |
l_mid_zigomatic | supraglabella | 0.57 | 0.57 | 0.57 | 1.000 |
glabella | r_mid_supraorbital | 0.56 | 0.64 | 0.43 | 1.488 |
l_mid_supraorbital | r_mid_supraorbital | 0.56 | 0.64 | 0.47 | 1.362 |
l_mid_infraorbital | r_mid_supraorbital | 0.56 | 0.56 | 0.57 | 1.018 |
glabella | supraglabella | 0.55 | 0.63 | 0.51 | 1.235 |
l_mid_infraorbital | l_mid_supraorbital | 0.54 | 0.47 | 0.61 | 1.298 |
rhinion | supraglabella | 0.52 | 0.55 | 0.45 | 1.222 |
r_mid_supraorbital | supraglabella | 0.52 | 0.68 | 0.46 | 1.478 |
gnathion | r_mid_infraorbital | 0.51 | 0.47 | 0.50 | 1.064 |
l_mid_infraorbital | r_mid_infraorbital | 0.51 | 0.57 | 0.48 | 1.188 |
gnathion | pogonion | 0.50 | 0.25 | 0.59 | 2.360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diac, M.M.; Fotache, M.; Romanov, N.; Damian, S.I.; Furnica, C.; Iov, T.; David, S.; Girlescu, N.; Hunea, I.; Lucasievici, C.; et al. Facial Soft Tissue Thickness Values for Romanian Adult Population. Appl. Sci. 2023, 13, 5949. https://doi.org/10.3390/app13105949
Diac MM, Fotache M, Romanov N, Damian SI, Furnica C, Iov T, David S, Girlescu N, Hunea I, Lucasievici C, et al. Facial Soft Tissue Thickness Values for Romanian Adult Population. Applied Sciences. 2023; 13(10):5949. https://doi.org/10.3390/app13105949
Chicago/Turabian StyleDiac, Madalina Maria, Marin Fotache, Nicolai Romanov, Simona Irina Damian, Cristina Furnica, Tatiana Iov, Sofia David, Nona Girlescu, Iuliana Hunea, Codrin Lucasievici, and et al. 2023. "Facial Soft Tissue Thickness Values for Romanian Adult Population" Applied Sciences 13, no. 10: 5949. https://doi.org/10.3390/app13105949
APA StyleDiac, M. M., Fotache, M., Romanov, N., Damian, S. I., Furnica, C., Iov, T., David, S., Girlescu, N., Hunea, I., Lucasievici, C., Scripcaru, A., & Iliescu, D. B. (2023). Facial Soft Tissue Thickness Values for Romanian Adult Population. Applied Sciences, 13(10), 5949. https://doi.org/10.3390/app13105949