Effects of Near-Fault Ground Motions on Civil Infrastructure
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Q.; Dong, S.; Wang, Q. Seismic Response of Skewed Integral Abutment Bridges under Near-Fault Ground Motions, Including Soil–Structure Interaction. Appl. Sci. 2021, 11, 3217. [Google Scholar] [CrossRef]
- AlShawa, O.; Angelucci, G.; Mollaioli, F.; Quaranta, G. Quantification of Energy-Related Parameters for Near-Fault Pulse-Like Seismic Ground Motions. Appl. Sci. 2020, 10, 7578. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, Z.; Lin, K.; Sun, Y.; Zhuo, W. Seismic Behavior of a Bridge with New Composite Tall Piers under Near-Fault Ground Motion Conditions. Appl. Sci. 2020, 10, 7377. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, G.; Lai, Z.; Du, X.; Wang, P.; Dong, H.; Jia, H. Shake Table Test of Long Span Cable-Stayed Bridge Subjected to Near-Fault Ground Motions Considering Velocity Pulse Effect and Non-Uniform Excitation. Appl. Sci. 2020, 10, 6969. [Google Scholar] [CrossRef]
- Bergami, A.V.; Fiorentino, G.; Lavorato, D.; Briseghella, B.; Nuti, C. Application of the Incremental Modal Pushover Analysis to Bridges Subjected to Near-Fault Ground Motions. Appl. Sci. 2020, 10, 6738. [Google Scholar] [CrossRef]
- An, H.; Lee, J.-H.; Shin, S. Dynamic Response Evaluation of Bridges Considering Aspect Ratio of Pier in Near-Fault and Far-Fault Ground Motions. Appl. Sci. 2020, 10, 6098. [Google Scholar] [CrossRef]
- Karam, G.; Tabbara, M. Rocking Blocks Stability under Critical Pulses from Near-Fault Earthquakes Using a Novel Energy Based Approach. Appl. Sci. 2020, 10, 5924. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, Y. Seismic Analysis of a Curved Bridge Considering Soil-Structure Interactions Based on a Separated Foundation Model. Appl. Sci. 2020, 10, 4260. [Google Scholar] [CrossRef]
- Katona, T.J. Safety of Nuclear Power Plants with Respect to the Fault Displacement Hazard. Appl. Sci. 2020, 10, 3624. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Li, M.; Min, Q.; Shi, B.; Song, L. Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions. Appl. Sci. 2020, 10, 885. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuti, C.; Briseghella, B.; Lavorato, D.; Taciroglu, E.; Bergami, A.V. Effects of Near-Fault Ground Motions on Civil Infrastructure. Appl. Sci. 2023, 13, 5929. https://doi.org/10.3390/app13105929
Nuti C, Briseghella B, Lavorato D, Taciroglu E, Bergami AV. Effects of Near-Fault Ground Motions on Civil Infrastructure. Applied Sciences. 2023; 13(10):5929. https://doi.org/10.3390/app13105929
Chicago/Turabian StyleNuti, Camillo, Bruno Briseghella, Davide Lavorato, Ertugrul Taciroglu, and Alessandro Vittorio Bergami. 2023. "Effects of Near-Fault Ground Motions on Civil Infrastructure" Applied Sciences 13, no. 10: 5929. https://doi.org/10.3390/app13105929
APA StyleNuti, C., Briseghella, B., Lavorato, D., Taciroglu, E., & Bergami, A. V. (2023). Effects of Near-Fault Ground Motions on Civil Infrastructure. Applied Sciences, 13(10), 5929. https://doi.org/10.3390/app13105929