Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Basic Chemical Composition
2.3. Farinograph Properties of Dough
2.4. Bread Preparation
2.5. Volume, Density and Yield of Bread
2.6. Texture of Crumb
2.7. Color Coordinates
2.8. Total Phenolics Content (TPC) and Antioxidant Capacity (AC)
2.9. Sensory Evaluation
2.10. Statistical Analyses
3. Results and Discussion
3.1. Basic Chemical Composition
3.2. Physical Properties of Dough
3.3. Basic Characteristics of Control and Enriched Bread
3.4. Bread Texture
3.5. Crumb Color
3.6. TPC and AC
3.7. Sensory Evaluation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conte, P.; Fadda, C.; Piga, A.; Collar, C. Techno-functional and nutritional performance of commercial breads available in Europe. Food Sci. Technol. Int. 2016, 22, 621–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capurso, A.; Capurso, C. The mediterranean way: Why elderly people should eat wholewheat sourdough bread—A little known component of the mediterranean diet and healthy food for elderly adults. Aging Clin. Exp. Res. 2020, 32, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derkanosova, N.M.; Stakhurlova, A.A.; Pshenichnaya, I.A.; Ponomareva, I.N.; Peregonchaya, O.V.; Sokolova, S.A. Amaranth as a bread enriching ingredient. Foods Raw Mater. 2020, 8, 223–231. [Google Scholar] [CrossRef]
- Cotovanu, I.; Ungureanu-Iuga, M.; Mironeasa, S. Investigation of Quinoa Seeds Fractions and Their Application in Wheat Bread Production. Plants 2021, 10, 2150. [Google Scholar] [CrossRef] [PubMed]
- Angioloni, A.; Collar, C. High legume-wheat matrices: An alternative to promote bread nutritional value meeting dough viscoelastic restictions. Eur. Food Res. Technol. 2012, 234, 273–284. [Google Scholar] [CrossRef]
- de Lamo, B.; Gómez, M. Bread Enrichment with Oilseeds. A Review. Foods 2018, 7, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef] [Green Version]
- Cacak-Pietrzak, G.; Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Biernacka, B. Cistus incanus L. as an Innovative Functional Additive to Wheat Bread. Foods 2019, 8, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Sułek, A.; Kocira, S.; Biernacka, B. Effect of Moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CyTA J. Food 2019, 17, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Dziki, D.; Cacak-Pietrzak, G.; Hassonn, W.H.; Gawlik-Dziki, U.; Sułek, A.; Różyło, R.; Suger, D. The fruit of sumac (Rhus coriaria L.) as a functional additive and salt replacement to wheat bread. LWT Food Sci. Technol. 2021, 136, 110346. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Łysiak, G.; Kulig, R.; Cacak-Pietrzak, G. Textural and sensory properties of wheat bread fortified with nettle (Urtica dioica L.) produced by scalded flour method. J. Food Process. Preserv. 2021, 45, e15851. [Google Scholar] [CrossRef]
- Boubaker, M.; Damergi, C.; Marzouk, C.B.; Blecker, C.; Bouzouita, N. Effect of artichoke (Cynara scolymus L.) by-product in the quality and total phenol content of bread. Mediterr. J. Chem. 2016, 5, 548–553. [Google Scholar] [CrossRef]
- Prokopov, T.; Chonova, V.; Slavov, A.; Dessev, T.; Dimitrov, N.; Petkova, N. Effects on the quality and health-enhancing properties of industrial onion waste powder on bread. J. Food Sci. Technol. 2018, 55, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Czubaszek, A.; Czaja, A.; Sokół-Łętowska, A.; Kolniak-Ostek, J.; Kucharska, A.Z. Changes in antioxidant properties and amounts of bioactive compounds during simulated in vitro digestion of wheat bread enriched with plant extracts. Molecules 2021, 26, 6292. [Google Scholar] [CrossRef] [PubMed]
- González-Castejón, M.; Visioli, F.; Rodriguez-Casado, A. Diverse biological activities of dandelion. Nutr. Rev. 2012, 70, 534–547. [Google Scholar] [CrossRef] [PubMed]
- García-Carrasco, B.; Fernández-Dacosta, R.; Dávalos, A.; Ordovás, J.M.; Rodriguez-Casado, A. In vitro hypolipidemic and antioxidant effects of leaf and root extracts of Taraxacum officinale. Med. Sci. 2015, 3, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pāduret, S.; Amariei, S.; Gutt, G.; Piscuc, B. The evaluation of Dandelion (Taraxacum officinale) Properties as a Valuable Food Ingredient. Rom. Biotech. Lett. 2016, 21, 11569–11575. [Google Scholar]
- Molinu, M.G.; Piluzza, G.; Campesi, G.; Sulas, L.; Re, G.A. Antioxidant Sources from Leaves of Russian Dandelion. Chem. Biodivers. 2019, 16, e19002. [Google Scholar] [CrossRef]
- Savych, A.; Bilyk, O.; Vaschuk, V.; Humeniuk, I. Analysis of inulin and fructans in Taraxacum officinale L. roots as the main inulin-containing component of antidiabetic herbal mixture. Pharmacia 2021, 68, 527–532. [Google Scholar] [CrossRef]
- Rawat, H.K.; Soni, H.; Kango, N.; Kumar, C.G. Continuous generation of fructose from Taraxacum officinale tap root extract and inulin by immobilized inulinase in a packed-bed reactor. Biocatal. Agric. Biotechnol. 2017, 9, 134–140. [Google Scholar] [CrossRef]
- Lis, B.; Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food product—History and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- Kenny, O.; Chandralal, M.H.; Brunton, N.P. Quantitative UPLC-MS/MS analysis of chlorogenic acid derivatives in antioxidant fractionates from dandelion (Taraxacum officinale) root. Int. J. Food Sci. Technol. 2015, 50, 766–773. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Kalisz, S.; Sujka, K. Effect of the Addition of Dried Dandelion Roots (Taraxacum officinale F.H. Wigg.) on Wheat Dough and Bread Properties. Molecules 2021, 26, 7564. [Google Scholar] [CrossRef] [PubMed]
- AACC. American Association of Cereal Chemistry Approved Methods, 10th ed. St. Paul. Available online: http://methods.aaccnet.org/toc.aspx (accessed on 10 November 2022).
- Belyaev, A.G.; Kovaleva, A.E.; Pyanikova, E.A. The influence of fireweed powder on the quality of wheat bread. Proc. Vor. State Univ. Eng. Technol. 2019, 80, 254–258. (In Russian) [Google Scholar] [CrossRef]
- Gámbaro, A.; Giménez, A.; Ares, G.; Gilardi, V. Influence of enzymes on the texture of brown pan bread. J. Texture Stud. 2006, 37, 300–314. [Google Scholar] [CrossRef]
- Różyło, R.; Wójcik, M.; Dziki, D.; Biernacka, B.; Cacak-Pietrzak, G.; Gawłowski, S.; Zdybel, A. Freeze-dried elderberry and chokeberry as natural colorants for gluten-free wafer sheets. Int. Agrophysics 2019, 33, 217–225. [Google Scholar] [CrossRef]
- Różyło, R.; Szymańska-Chargot, M.; Gawlik-Dziki, U.; Dziki, D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem. 2021, 346, 128889. [Google Scholar] [CrossRef]
- Sujka, K.; Cacak-Pietrzak, G.; Sułek, A.; Murgrabia, K.; Dziki, D. Buckwheat Hull-Enriched Pasta: Physicochemical and Sensory Properties. Molecules 2022, 27, 4065. [Google Scholar] [CrossRef]
- Singh, A.; Raju, R.; Mrad, M.; Reddell, P.; Münch, G. The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products. Fitoterapia 2020, 143, 104598. [Google Scholar] [CrossRef]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef]
- Bender, D.; Schönlechner, R. Innovative approaches towards improved gluten-free bread properties. J. Cereal Sci. 2020, 91, 102904. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chem. 2020, 97, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Sukhikh, S.; Ivanova, S.; Dolganyuk, V.; Pilevinova, I.; Prosekov, A.; Ulrikh, E.; Noskova, S.; Michaud, P.; Babich, O. Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production. Appl. Sci. 2022, 12, 12563. [Google Scholar] [CrossRef]
- Odunlade, T.V.; Famuwagun, A.A.; Taiwo, K.A.; Gbadamosi, S.O.; Oyedele, D.J.; Adebooye, O.C. Chemical Composition and Quality Characteristics of Wheat Bread Supplemented with Leafy Vegetable Powders. J. Food Qual. 2017, 2017, 9536716. [Google Scholar] [CrossRef] [Green Version]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- Abd-El-Khalek, M.; Youssif, M. Correlation Between Dough Rheological Properties and Pan Bread Crumb Quality Characteristics. Egypt. J. Agric. Sci. 2018, 69, 353–369. [Google Scholar] [CrossRef]
- Morsy, M.K. Physicochemical and Sensory Properties of Functional Biscuits Fortified with Oat Flour. Ann. Agric. Sci. Moshtohor 2022, 60, 63–72. [Google Scholar] [CrossRef]
- Purhagen, J.K.; Sjöö, M.E.; Eliasson, A.C. Fibre-rich additives-the effect on staling and their function in free-standing and pan-baked bread. J. Sci. Food Agric. 2012, 92, 1201–1213. [Google Scholar] [CrossRef]
- Miś, A.; Grundas, S.; Dziki, D.; Laskowski, J. Use of farinograph measurements for predicting extensograph traits of bread dough enriched with carob fibre and oat wholemeal. J. Food Eng. 2012, 108, 1–12. [Google Scholar] [CrossRef]
- Ooms, N.; Delcour, J.A. How to impact gluten protein network formation during wheat flour dough making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Salehi, F. Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Sci. Nutr. 2019, 7, 3391–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourekoua, H.; Gawlik-Dziki, U.; Różyło, R.; Zidoune, M.N.; Dziki, D. Acerola fruit as a natural antioxidant ingredient for gluten-free bread: An approach to improve bread quality. Food Sci. Technol. Int. 2021, 27, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, H.; Mu, T. Effects of sweet potato leaf powder on sensory, texture, nutrition, and digestive characteristics of steamed bread. J. Food Process. Preserv. 2022, 46, e16697. [Google Scholar] [CrossRef]
- Wang, X.; Lao, X.; Bao, Y.; Guan, X.; Li, C. Effect of whole quinoa flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Hydrocoll. 2021, 119, 106840. [Google Scholar] [CrossRef]
- Dziki, D.; Hassoon, W.H.; Biernacka, B.; Gawlik-Dziki, U. Dried and Powdered Leaves of Parsley as a Functional Additive to Wheat Bread. Appl. Sci. 2022, 12, 7930. [Google Scholar] [CrossRef]
- Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Cacak-Pietrzak, G.; Miś, A.; Rudy, S. Physical properties of gluten-free bread caused by water addition. Int. Agrophysics 2015, 29, 353–364. [Google Scholar] [CrossRef]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Grauso, L.; Emrick, S.; de Falco, B.; Lanzotti, V.; Bonanomi, G. Common dandelion: A review of its botanical, phytochemical and pharmacological profiles. Phytochem. Rev. 2019, 18, 1115–1132. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Wirngo, F.E.; Lambert, M.N.; Jeppesen, P.B. The physiological effects of dandelion (Taraxacum officinale) in type 2 diabetes. Rev. Diabet. Stud. 2016, 13, 113–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Lis, B.; Juśkiewicz, J.; Ognik, K.; Borkowska-Sztachańska, M.; Jedrejek, D.; Stochmal, A.; Olas, B. Phenolic fractions from dandelion leaves and petals as modulators of the antioxidant status and lipid profile in an in vivo study. Antioxidants 2020, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Jędrejek, D.; Kontek, B.; Lis, B.; Stochmal, A.; Olas, B. Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H2O2 and H2O2/Fe. Chem. Biol. Interact. 2017, 262, 29–37. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Korus, A.; Witczak, M.; Korus, J.; Juszczak, L. Dough Rheological Properties and Characteristics of Wheat Bread with the Addition of Lyophilized Kale (Brassica oleracea L. var. sabellica) Powder. Appl. Sci. 2023, 13, 29. [Google Scholar] [CrossRef]
- Pycia, K.; Pawłowska, A.M.; Kaszuba, J.; Żurek, N. Walnut Male Flowers (Juglans regia L.) as a Functional Addition to Wheat Bread. Foods 2022, 11, 3988. [Google Scholar] [CrossRef]
- Alotaibi, H.N.; Anderson, A.K.; Sidhu, J.S. Influence of lutein content of marigold flowers on functional properties of baked pan bread. Ann. Agric. Sci. 2021, 66, 162–168. [Google Scholar] [CrossRef]
Sample | Ash (%) | Fiber (%) | Protein (%) | Fat (%) | Carbohydrates (%) |
---|---|---|---|---|---|
WF | 0.71 ± 0.03 a | 2.93 ± 0.04 a | 12.56 ± 0.90 a | 1.73 ± 0.02 a | 81.77 ± 87 b |
DF | 6.15 ± 0.04 b | 19.53 ± 0.12 b | 15.75 ± 0.72 b | 7.54 ± 0.13 b | 54.03 ± 0.54 a |
CS | 0.73 ± 0.02 a | 2.99 ± 0.04 a | 12.59 ± 0.12 a | 1.68 ± 0.02 a | 82.74 ± 0.10 e |
D1 | 0.81 ± 0.04 b | 3.15 ± 0.05 b | 12.62 ± 0.11 ab | 1.72 ± 0.04 ab | 81.78 ± 0.12 d |
D2 | 0.93 ± 0.05 c | 3.32 ± 0.07 c | 12.66 ± 0.12 ab | 1.76 ± 0.03 bc | 81.45 ± 0.09 cd |
D3 | 1.02 ± 0.04 d | 3.49 ± 0.11 d | 12.69 ± 0.09 ab | 1.80 ± 0.03 c | 81.10 ± 0.11 bc |
D4 | 1.07 ± 0.06 d | 3.66 ± 0.09 e | 12.73 ± 0.08 b | 1.82 ± 0.04 c | 80.77 ± 0.08 b |
D5 | 1.15 ± 0.02 e | 3.89± 0.08 f | 12.78 ± 0.13 b | 1.86 ± 0.05 cd | 80.32 ± 0.12 a |
D6 | 1.23 ± 0.06 f | 4.12 ± 0.14 g | 12.83 ± 0.12 b | 1.90 ± 0.03 d | 79.92 ± 0.14 a |
Sample | Water Absorption [%] | Development Time [min] | Stability of Dough [min] | Degree of softening (FU) |
---|---|---|---|---|
CS | 57.67 ± 0.06 a | 4.00 ± 0.52 a | 5.93 ± 3.51 a | 50.33 ± 6.03 a |
D1 | 57.90 ± 0.70 a | 4.60 ± 0.66 ba | 7.67 ± 0.64 bc | 37.33 ± 5.03 c |
D2 | 58.80 ± 0.10 a | 5.67 ± 0.06 bc | 6.90 ± 0.30 abc | 53.67 ± 0.58 ab |
D3 | 59.67 ± 0.12 b | 5.30 ± 0.10 bc | 6.07 ± 0.06 ab | 64.33 ± 2.08 b |
D4 | 60.43 ± 0.06 bc | 5.47 ± 0.25 bc | 6.47 ± 0.32 abc | 54.67 ± 4.51 ab |
D5 | 60.83 ± 0.12 cd | 6.53 ± 0.25 cd | 8.03 ± 0.35 c | 36.00 ± 3.61 c |
D6 | 61.23 ± 0.12 d | 7.13 ± 0.90 d | 12.57 ± 1.29 d | 13.00 ± 4.36 d |
Sample | Bread Yield [%] | Crumb Moisture [%] | Bread Volume [cm3/100 g] | Crumb Density [g/cm3] |
---|---|---|---|---|
CS | 143.0 ± 0.4 a | 43.7 ± 0.3 a | 380.3 ± 1.5 d | 0.273 ± 0.002 a |
D1 | 143.5 ± 0.5 a | 45.3 ± 0.1 b | 373.3 ± 5.7 cd | 0.254 ± 0.002 c |
D2 | 144.1 ± 0.3 a | 46.0 ± 0.1 c | 364.7 ± 11.5 cd | 0.274 ± 0.002 a |
D3 | 144.5 ± 0.4 a | 46.2 ± 0.1 d | 343.7 ± 15.5 bc | 0.321 ± 0.002 b |
D4 | 146.3 ± 0.7 b | 46.5 ± 0.4 e | 333.3 ± 6.4 ab | 0.326 ± 0.003 b |
D5 | 146.7 ± 1.2 b | 46.7 ± 0.1 f | 325.7 ± 5.1 ab | 0.336 ± 0.005 d |
D6 | 147.9 ± 0.7 b | 46.8 ± 0.4 g | 304.0 ± 2.7 a | 0.352 ± 0.005 e |
Sample | Hardness [N] | Elasticity [-] | Springiness [-] | Cohesiveness [-] | Gumminess [N] | Chewiness [N] |
---|---|---|---|---|---|---|
CS | 6.08 ± 0.43 a | 0.35 ± 0.02 a | 0.94 ± 0.05 a | 0.71 ± 0.06 a | 4.32 ± 0.63 a | 4.07 ± 0.78 a |
D1 | 6.40 ± 0.65 ab | 0.37 ± 0.02 a | 0.91 ± 0.01 a | 0.73 ± 0.06 a | 4.55 ± 0.09 a | 4.15 ± 0.13 ab |
D2 | 6.99 ± 0.34 abc | 0.34 ± 0.01 a | 0.91 ± 0.01 a | 0.68 ± 0.04 a | 4.78 ± 0.46 ac | 4.43 ± 0.42 abc |
D3 | 7.32 ± 0.12 bc | 0.32 ± 0.01 ab | 0.90 ± 0.02 a | 0.72 ± 0.02 a | 5.22 ± 0.03 abc | 4.67 ± 0.02 abcd |
D4 | 7.72 ± 0.10 cd | 0.36 ± 0.02 a | 0.91 ± 0.01 a | 0.72 ± 0.02 a | 5.65 ± 0.05 bc | 5.13 ± 0.08 bcd |
D5 | 8.48 ± 0.12 d | 0.34 ± 0.03 a | 0.91 ± 0.01 a | 0.71 ± 0.05 a | 5.97 ± 0.51 b | 5.33 ± 0.33 cd |
D6 | 10.63 ± 0.27 e | 0.28 ± 0.01 b | 0.90 ± 0.02 a | 0.62 ± 0.02 a | 6.16 ± 0.11 b | 5.50 ± 0.13 d |
Sample | TPC [mg GAE/g DM] | EC50DPPH [mg DM/mL] | EC50ABTS [mg DM/mL] |
---|---|---|---|
CS | 1.00 ± 0.06 a | 614.8 ± 6.4 f | 129.7 ± 1.0 f |
D1 | 1.51 ± 0.05 b | 342.9 ± 3.8 e | 110.5 ± 3.2 a |
D2 | 1.92 ± 0.12 c | 234.2 ± 3.6 d | 107.4 ± 2.0 a |
D3 | 2.13 ± 0.03 d | 159.7 ± 0.39 c | 95.7 ± 2.7 e |
D4 | 2.34 ± 0.01 e | 151.8 ± 2.30 bc | 87.9 ± 1.3 d |
D5 | 3.17 ± 0.01 f | 141.9 ± 4.6 b | 70.2 ± 2.6 c |
D6 | 3.45 ± 0.03 g | 134.9 ± 1.2 a | 61.9 ± 0.4 b |
Sample | Appearance | Smell | Taste | Texture | Color | Overall Acceptability |
---|---|---|---|---|---|---|
CS | 8.5 ± 0.9 d | 7.3 ± 0.2 e | 8.1 ± 0.6 e | 8.6 ± 0.2 d | 8.1 ± 0.5 e | 8.0 ± 0.5 g |
D1 | 7.6 ± 0.8 cd | 7.2 ± 0.4 de | 7.6 ± 0.7 de | 7.9 ± 0.3 d | 7.6 ± 0.6 d | 7.4 ± 0.5 f |
D2 | 7.1 ± 0.6 c | 6.6 ± 0.4 d | 7.3 ± 0.5 cd | 6.8 ± 0.3 c | 6.7 ± 0.6 c | 6.8 ± 0.5 e |
D3 | 4.7 ± 0.5 b | 6.2 ± 0.4 d | 6.7 ± 0.4 bc | 6.4 ± 0.4 c | 6.2 ± 0.4 c | 6.0 ± 0.3 d |
D4 | 4.4 ± 0.6 b | 5.4 ± 0.3 c | 6.0 ± 0.5 b | 5.3 ± 0.2 b | 5.1 ± 0.3 b | 4.9 ± 0.3 c |
D5 | 3.1 ± 0.2 a | 4.0 ± 0.2 b | 5.1 ± 0.4 a | 4.4 ± 0.3 a | 3.9 ± 0.3 a | 4.2 ± 0.2 b |
D6 | 2.9 ± 0.2 a | 3.3 ± 0.2 a | 4.0 ± 0.3 a | 3.8 ± 0.3 a | 3.2 ± 0.2 a | 3.3 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Wójcik, M.; Krajewska, A. Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality. Appl. Sci. 2023, 13, 477. https://doi.org/10.3390/app13010477
Cacak-Pietrzak G, Dziki D, Gawlik-Dziki U, Sułek A, Wójcik M, Krajewska A. Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality. Applied Sciences. 2023; 13(1):477. https://doi.org/10.3390/app13010477
Chicago/Turabian StyleCacak-Pietrzak, Grażyna, Dariusz Dziki, Urszula Gawlik-Dziki, Alicja Sułek, Monika Wójcik, and Anna Krajewska. 2023. "Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality" Applied Sciences 13, no. 1: 477. https://doi.org/10.3390/app13010477