Opportunities for Low Indirect Land Use Biomass for Biofuels in Europe
Abstract
:1. Introduction
2. Materials and Methods
- Identified biomass crops that show promise in fitting the low ILUC-risk criteria and have high technological readiness level (TRL) for 2030 while being adapted to European agroecological climatic zones, being suitable as feedstock for advanced biofuels and, where feasible, exhibiting good adaptability when cultivated in land with natural constraints;
- Observed attainable crop yield in conventional farming land and in land with natural constraints and potential yield increases that can be expected when sustainable agricultural practices are applied;
- Estimated production cost and profitability prospects for European farmers under current market price ranges.
3. Results
3.1. Biophysical Opportunities for Low ILUC Risk Crops
3.1.1. Oil Crops
3.1.2. Lignocellulosic Crops
3.1.3. Sustainable Agricultural Practices
3.1.4. Crops and Yielding Potentials in Marginal Land
3.1.5. Potential Yield Increases by 2030
- Baseline yields are the ones reported in Table 3.
- Crop yield increases due to already foreseen genetic crop improvements in the varieties used is 10% between 2020 and 2030. This calculates an increase of 1% annually and is in line with the EU Agricultural Outlook, which presents the respective yield increases for cereals in Europe (agricultural-outlook-2020-report_en.pdf (europa.eu)).
- The low and high increase rate because of the application of one or multiple sustainable agricultural practices (e.g., intercropping and biochar, etc.) is calculated as an average of 15% and 25%, respectively, between 2020 and 2030 based on the findings from BIO4A and SoilCare projects.
3.2. Economic
3.3. Ensuring a Viable Farm Income
- 300–450 €/tonne of oilseeds for oil crops.
- 50–100 €/tonne of dry matter for lignocellulosic crops.
4. Discussion
4.1. Biophysical Opportunities
4.2. Economic Opportunities
4.3. Policy Context
4.3.1. Status in REDII
4.3.2. Broader Policy Intersections
5. Conclusions
- The restoration of land with mild or severe biophysical constraints can be very challenging as most cases require significant effort and material input to turn land to productivity. This can be particularly challenging in land with high contamination and may result in environmental risks, rather than environmental benefits. Future policy interventions must be in place to regulate the ratio of input/output and ensure sustainable low input practices are safeguarded.
- Land preparation in areas with natural constraint conditions can be very costly. There is need for financial support to farmers and landowners. The opportunities currently discussed in the carbon farming initiative and the options for including such activities to eco-schemes as beneficial for soil carbon are well suited.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Appendix A
Rapeseed | Ethiopian Mustard | Crambe | Camelina | Cardoon | Safflower | Castor | Willow | Poplar | Biomass Sorghum | Miscanthus | Switchgrass | Cardoon | Giant Reed | Reed Canary Grass | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mediterranean | Baseline 2020 | 3.0 | 2.5 | 3.0 | 3.0 | 3.5 | 1.5 | 3.5 | 13.0 | 10.0 | 20.0 | 25.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Yield increase from improved varieties | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4 | 1.3 | 1.0 | 2.0 | 2.5 | 2.0 | 2.0 | 2.0 | 2.0 | |
Low increase due to sustainable practices | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.2 | 0.6 | 2.1 | 1.7 | 3.3 | 4.1 | 3.3 | 3.3 | 3.3 | 3.3 | |
High increase due to sustainable practices | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4 | 1.4 | 1.1 | 2.2 | 2.8 | 2.2 | 2.2 | 2.2 | 2.2 | |
Projected yield for 2030 | 4.1 | 3.4 | 4.1 | 4.1 | 4.8 | 2.1 | 4.8 | 7.9 | 13.8 | 27.5 | 34.4 | 27.5 | 27.5 | 27.5 | 27.5 | |
Continental and Boreal | Baseline 2020 | 4.0 | 4.0 | 2.5 | 2.5 | 3.0 | 2.0 | 0.1 | 12 | 10.0 | 15.0 | 18.0 | 18.0 | 15.0 | 15.0 | |
Yield increase from improved varieties | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.1 | 1.2 | 1.0 | 1.5 | 1.8 | 1.8 | 0.0 | 1.5 | 1.5 | |
Low increase due to sustainable practices | 0.7 | 0.7 | 0.4 | 0.4 | 0.5 | 0.3 | 0.0 | 2.0 | 1.7 | 2.5 | 3.0 | 3.0 | 0.0 | 2.5 | 2.5 | |
High increase due to sustainable practices | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.0 | 1.3 | 1.1 | 1.7 | 2.0 | 2.0 | 0.0 | 1.7 | 1.7 | |
Projected yield for 2030 | 5.5 | 5.5 | 3.4 | 3.4 | 4.1 | 2.8 | 0.3 | 16.5 | 13.8 | 20.6 | 24.8 | 24.8 | 0.0 | 20.6 | 20.6 | |
Atlantic | Baseline 2020 | 4.5 | 3.5 | 2.0 | 2.5 | 3.0 | 0.0 | 0.0 | 12.0 | 10.0 | 15.0 | 18.0 | 18.0 | 14.0 | 15.0 | 15.0 |
Yield increase from improved varieties | 0.5 | 0.4 | 0.2 | 0.3 | 0.3 | 0.0 | 0.0 | 1.2 | 1.0 | 1.5 | 1.8 | 1.8 | 1.4 | 1.5 | 1.5 | |
Low increase due to sustainable practices | 0.7 | 0.6 | 0.3 | 0.4 | 0.5 | 0.0 | 0.0 | 2.0 | 1.7 | 2.5 | 3.0 | 3.0 | 2.3 | 2.5 | 2.5 | |
High rate of increase due to sustainable practices | 0.5 | 0.4 | 0.2 | 0.3 | 0.3 | 0.0 | 0.0 | 1.3 | 1.1 | 1.7 | 2.0 | 2.0 | 1.5 | 1.7 | 1.7 | |
Projected yield for 2030 | 6.2 | 4.8 | 2.8 | 3.4 | 4.1 | 0.0 | 0.0 | 16.5 | 13.8 | 20.6 | 24.8 | 24.8 | 19.3 | 20.6 | 20.6 |
Rapeseed | Ethiopian Mustard | Crambe | Camelina | Cardoon | Safflower | Castor | Willow | Poplar | Biomass Sorghum | Miscanthus | Switchgrass | Cardoon | Giant Reed | Reed Canary Grass | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mediterranean | Baseline 2020 | 1.5 | 1.5 | 1 | 1 | 2 | 0.8 | 1.5 | 8 | 7.5 | 12 | 9 | 8 | 10 | 10 | 10 |
Yield increase from improved varieties | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.8 | 0.8 | 1.2 | 0.9 | 0.8 | 1.0 | 1.0 | 1.0 | |
Low increase due to sustainable practices | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 1.3 | 1.2 | 2.0 | 1.5 | 1.3 | 1.7 | 1.7 | 1.7 | |
High increase due to sustainable practices | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.9 | 0.8 | 1.3 | 1.0 | 0.9 | 1.1 | 1.1 | 1.1 | |
Projected yield for 2030 | 2.1 | 2.1 | 1.4 | 1.4 | 2.8 | 1.1 | 2.1 | 11.0 | 10.3 | 16.5 | 12.4 | 11.0 | 13.8 | 13.8 | 13.8 | |
Continental and Boreal | Baseline 2020 | 2.5 | 1.5 | 1 | 2.5 | 1.5 | 9 | 8.5 | 9 | 9 | 8 | 9 | 9 | |||
Yield increase from improved varieties | 0.3 | 0.2 | 0.1 | 0.3 | 0.2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.0 | 0.9 | 0.9 | |||
Low increase due to sustainable practices | 0.4 | 0.2 | 0.2 | 0.4 | 0.2 | 1.5 | 1.4 | 1.5 | 1.5 | 1.3 | 0.0 | 1.5 | 1.5 | |||
High increase due to sustainable practices | 0.3 | 0.2 | 0.1 | 0.3 | 0.2 | 1.0 | 0.9 | 1.0 | 1.0 | 0.9 | 0.0 | 1.0 | 1.0 | |||
Projected yield for 2030 | 3.4 | 2.1 | 1.4 | 3.4 | 2.1 | 12.4 | 11.7 | 12.4 | 12.4 | 11.0 | 0.0 | 12.4 | 12.4 | |||
Atlantic | Baseline 2020 | 2 | 1 | 0.5 | 2.5 | 1.5 | NA | NA | 9 | 8 | 9 | 8 | 7.5 | 8 | 9 | 9 |
Yield increase from improved varieties | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.9 | 0.8 | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | |||
Low increase due to sustainable practices | 0.3 | 0.2 | 0.1 | 0.4 | 0.2 | 1.5 | 1.3 | 1.5 | 1.3 | 1.2 | 1.3 | 1.5 | 1.5 | |||
High increase due to sustainable practices | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 1.0 | 0.9 | 1.0 | 0.9 | 0.8 | 0.9 | 1.0 | 1.0 | |||
Projected yield for 2030 | 2.8 | 1.4 | 0.7 | 3.4 | 2.1 | 0.0 | 0.0 | 12.4 | 11.0 | 12.4 | 11.0 | 10.3 | 11.0 | 12.4 | 12.4 |
References
- Recast of the Renewable Energy Directive II. Available online: https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 3 April 2022).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0807 (accessed on 3 April 2022).
- C (2019) 2055 Final. Commission Delegated Regulation Supplementing Directive (EU) 2018/2001 as Regards the Determination of High Indirect Land-Use Change-RISK feedstock for Which a Significant Expansion of the Production Area into Land with High Carbon Stock Is Observed and the Certification of Low Indirect Landuse Change-Risk Biofuels, Bioliquids and Biomass Fuels. 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2_en_act_part1_v3.pdf (accessed on 3 April 2022).
- COM (2019) 142. Report from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions on the Status of Production Expansion of Relevant Food and Feed Crops Worldwide. 2019. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2019/EN/COM-2019-142-F1-EN-MAIN-PART-1.PDF (accessed on 3 April 2022).
- Malins. Risk Management-Identifying High and Low ILUC-Risk Biofuels under the Recast Renewable Energy Directive. 2019. Available online: https://www.transportenvironment.org/sites/te/files/2019_01_Cerulogy_Risk_management_study.pdf (accessed on 2 April 2022).
- ICCT. Analysis of High and Low Indirect Land-Use Change Definitions in European Union Renewable Fuel Policy. 2018. Available online: https://www.theicct.org/sites/default/files/publications/High_low_ILUC_risk_EU_20181115.pdf (accessed on 1 April 2022).
- EWABA. Greene Report Analysis of the Current Development of Household UCO Collection Systems in the EU. 2016. Available online: https://theicct.org/sites/default/files/publications/Greenea%20Report%20Household%20UCO%20Collection%20in%20the%20EU_ICCT_20160629.pdf (accessed on 3 April 2022).
- Goh, B.H.H.; Chong, C.T.; Ge, Y.; Ong, H.C.; Ng, J.-H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag. 2020, 223, 113296. [Google Scholar] [CrossRef]
- Sustainable Carbon Cycles. 2021. Available online: https://ec.europa.eu/clima/eu-action/forests-and-agriculture/sustainable-carbon-cycles_en (accessed on 1 April 2022).
- Fit for 55: The EU Launches Ambitious Plan to Cut Emissions by Net 55% by 2030. 2021. Available online: https://energytransition.org/2021/11/fit-for-55-the-eu-launches-ambitious-plan-to-cut-emissions-by-net-55-by-2030/ (accessed on 3 April 2022).
- Stratas Advisors. What to Expect for Biofuels from Wednesday’s EU Fit for 55 Package. Available online: https://admin.stratasadvisors.com/Insights/2021/07122021-EUFitFor55 (accessed on 4 April 2022).
- European Court of Auditors. Special Report No. 16/2021 Common Agricultural Policy and Climate: Half of EU Climate Spending but Farm Emissions Are Not Decreasing 2021/C 266/04. Available online: https://op.europa.eu/en/publication-detail/-/publication/d34009cd-ddf4-11eb-895a-01aa75ed71a1/language-en/format-PDF/source-search (accessed on 3 April 2022).
- Marc, J.M. The Environmental Stratification of Europe, [Dataset]; University of Edinburgh: Edinburgh, UK, 2018. [Google Scholar] [CrossRef]
- PANACEA Deliverable 1.2. Inventory of near to practice NFCs in Europe. Available online: http://www.panacea-h2020.eu/wp-content/uploads/2019/05/D1.2-Inventory-of-near-to-practice-NFC.pdf (accessed on 3 April 2022).
- Panoutsou, C.; Singh, A.; Christensen, T.; Alexopoulou, E.; Zanetti, F. Deliverable D1.3 Strength and Opportunities of Nearto-Practice Non-Food Crops (NFCs); PANACEA Reports, Supported by the EU’s Horizon 2020 Programme under GA No. 773501; Imperial College London: London, UK, 2021; Available online: http://www.panacea-h2020.eu/wp-content/uploads/2021/04/D1.3-Strengths-opportunities-of-NFCs-FINAL-.pdf (accessed on 3 April 2022).
- Alexopoulou, E.; Christou, M.; Eleftheriadis, I. Handbook with Fact Sheets of the Existing Resource-Efficient Industrial Crops (Deliverable D1.5); MAGIC Project Reports, Supported by the EU’s Horizon 2020 Programme under GA No. 727698; CRES: Athens, Greece, 2018; Available online: https://magic-h2020.eu/reports-deliverables/ (accessed on 2 April 2022).
- Panoutsou, C.; Singh, A.; Christensen, T.; Alexopoulou, E.; Zanetti, F. Deliverable D4.1 Training Materials for Agronomists and Students; PANACEA Reports, Supported by the EU’s Horizon 2020 Programme under GA No. 773501; Imperial College London: London, UK, 2021; Available online: http://www.panacea-h2020.eu/wp-content/uploads/2021/04/D4.1-Training-manual-for-agronomists-and-students-update-.pdf (accessed on 3 April 2022).
- Rettenmaier, N. D6.1—Interim Report on Definitions and Settings; MAGIC Project Reports, Supported by the EU’s Horizon 2020 Programme under GA No. 727698; IFEU: Heidelberg, Germany, 2018; Available online: http://magic-h2020.eu/documents-reports/ (accessed on 3 April 2022).
- von Cossel, M.; Iqbal, Y.; Scordia, D.; Cosentino, S.L.; Elbersen, B.; Staritsky, I.; van Eupen, M.; Mantel, S.; Prysiazhniuk, O.; Maliarenko, O.; et al. Low-Input Agricultural Practices for Industrial Crops on Marginal Land (Deliverable D4.1); MAGIC Project Reports, Supported by the EU’s Horizon 2020 Programme under GA No. 727698; University of Hohenheim: Stuttgart (Hohenheim), Germany, 2018; Available online: http://magic-h2020.eu/documents-reports/ (accessed on 3 April 2022).
- Prussi, M.; Panoutsou, C.; Chiaramonti, D. Assessment of the Feedstock Availability for Covering EU Alternative Fuels Demand. Appl. Sci. 2022, 12, 740. [Google Scholar] [CrossRef]
- Prussi, M.; Scarlat, N.; Acciaro, M.; Kosmas, V. Potential and limiting factors in the use of alternative fuels in the European maritime sector. J. Clean. Prod. 2021, 291, 125849. [Google Scholar] [CrossRef] [PubMed]
- High Erucic Acid Rapeseed (HEAR). Available online: https://www.perdueagribusiness.com/specialty-crops/hear/ (accessed on 3 April 2022).
- Costa, E.; Almeida, M.F.; Alvim-Ferraz, C.; Dias, J. The cycle of biodiesel production from Crambe abyssinica in Portugal. Ind. Crop. Prod. 2019, 129, 51–58. [Google Scholar] [CrossRef]
- Souza, M.C.G.; de Oliveira, M.F.; Vieira, A.T.; de Faria, A.M.; Batista, A.C.F. Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability. Renew Energy 2021, 163, 368–374. [Google Scholar] [CrossRef]
- Llugany, M.; Miralles, R.; Corrales, I.; Barceló, J.; Poschenrieder, C. Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J. Geochem. Explor. 2012, 123, 122–127. [Google Scholar] [CrossRef]
- Sevigné-Itoiz, E.; Mwabonje, O.; Panoutsou, C.; Woods, J. Life cycle 1039 assessment (LCA): Informing the development of a sustainable circular 1040 bioeconomy? Phil. Trans. R. Soc. A 2021, 379, 20200352. [Google Scholar] [CrossRef]
- Fernando, A.L.; Barbosa, B.; Costa, J.; Papazoglou, E.G. Giant Reed (Arundo donax L.): A Multipurpose Crop Bridging Phytoremediation with Sustainable Bioeconomy. In Bioremediation and Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–95. [Google Scholar]
- Bradford, M.; Wieder, W.; Bonan, W.R.W.G.B.; Fierer, N.; Raymond, P.A.; Crowther, M.A.B.P.A.R.T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- How the EU Is Accelerating Carbon Farming & Industrial Carbon Removals? Available online: https://www.ecomatters.nl/nl/news/how-the-eu-is-accelerating-carbon-farming-industrial-carbon-removals/ (accessed on 1 April 2022).
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Panoutsou, C. Supply of solid biofuels: Potential feedstocks, cost and sustainability issues in EU27. In Solid Biofuels for Energy: A Lower Greenhouse Gas Alternative; Springer: Berlin/Heidelberg, Germany, 2010; p. 258. ISBN 978-1-84996-392-3. [Google Scholar]
- Boehm, M.; Junkins, B.; Desjardins, R.; Kulshreshtha, S.; Lindwall, W. Sink Potential of Canadian Agricultural Soils. Clim. Chang. 2004, 65, 297–314. [Google Scholar] [CrossRef]
- Capriel, P. Trends in organic carbon and nitrogen contents in agricultural soils in Bavaria (south Germany) between 1986 and 2007. Eur. J. Soil Sci. 2013, 64, 445–454. [Google Scholar] [CrossRef]
- Soilcare Project Glossary. Available online: https://www.soilcare-project.eu/resources/glossary (accessed on 3 April 2022).
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- McNeill, A.; Muro, M.; Tugran, T.; Lukacova, Z. Report on the Selection of Good Policy Alternatives at EU and Study Site Level. 2021. Available online: https://www.soilcare-project.eu/downloads/public-documents/soilcare-reports-and-deliverables/186-report-13-d7-2-milieu-full-v2/file (accessed on 2 April 2022).
- COWI, Ecologic Institute, & IEEP. Operationalising an EU Carbon Farming Initiative—Executive Summary; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- SoilCare Project. A Review of Soil-Improving Cropping Systems; Oenema, O., Heinen, M., Rietra, R., Hessel, R., Eds.; Deliverable 2.1 (Vol. Report Number); Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Van Delden, H.; Fleskens, L.; Muro, M.; Tugran, T.; Vanhout, R.; Baartman, J.; Nunes, J.P.; Vanermen, I.; Salputra, G.; Verzandvoort, S.; et al. Report on the Potential for Applying Soil-Improving CS across Europe; Deliverable 6.2 from the EU SoilCare Project, Grant Agreement 677407; European Commission: Brussels, Belgium, 2021; p. 224. Available online: https://www.soilcare-project.eu/downloads/public-documents/soilcare-reports-and-deliverables/433-report-43-d6-2-report-on-the-potential-for-applying-sics-across-europe-riks-full/file (accessed on 3 April 2022).
- Aronsson, H.; Hansen, E.M.; Thomsen, I.K.; Liu, J.; Øgaard, A.F.; Kankanen, H.; Ulen, B. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. J. Soil Water Conserv. 2016, 71, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Soroka, M. Effect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 2018, 16, 3087–3096. [Google Scholar] [CrossRef]
- Woźniak, A.; Nowak, A.; Haliniarz, M.; Gawęda, D. Yield and Economic Results of Spring Barley Grown in Crop Rotation and in Monoculture. Pol. J. Environ. Stud. 2019, 28, 2441–2448. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Huttunen, I.; Lehtonen, H.; Huttunen, M.; Piirainen, V.; Korppoo, M.; Veijalainen, N.; Viitasalo, M.; Vehviläinen, B. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Sci. Total Environ. 2015, 529, 168–181. [Google Scholar] [CrossRef]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, e15. [Google Scholar] [CrossRef] [Green Version]
- Brahma, B.; Pathak, K.; Lal, R.; Kurmi, B.; Das, M.; Nath, P.C.; Nath, A.J.; Das, A.K. Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degrad. Dev. 2018, 29, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D.R. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, M.; Mbow, C.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., PichsMadruga, R., Sokona, Y., Minx, J.C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, Brunner, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mupepele, A.-C.; Keller, M.; Dormann, C.F. European agroforestry has no unequivocal effect on biodiversity: A time-cumulative meta-analysis. BMC Ecol. Evol. 2021, 21, 193. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.J.; Rosati, A. Advances in European agroforestry: Results from the AGFORWARD project. Agrofor. Syst. 2018, 92, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Godinho, C.; Gomes, M.; Rabaça, J.E. The importance of the surroundings: Are bird communities of riparian galleries influenced by agroforestry matrices in SW Iberian Peninsula? Ann. For. Sci. 2014, 71, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Chimento, C.; Almagro, M.; Amaducci, S. Carbon sequestration potential in perennial bioenergy crops: The importance of organic matter inputs and its physical protection. Glob. Chang. Biol. Bioenergy 2016, 8, 111–121. [Google Scholar] [CrossRef]
- Amaducci, S.; Facciotto, G.; Bergante, S.; Perego, A.; Serra, P.; Ferrarini, A.; Chimento, C. Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley. Glob. Chang. Biol. Bioenergy 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Panoutsou, C.; Singh, A.; Christensen, T.; Pelkmans, L. Competitive priorities to address optimisation in biomass value chains: The case of biomass CHP. Global Trans. 2020, 2, 60–75. [Google Scholar] [CrossRef]
Project | Scope | Relevance to Low ILUC |
---|---|---|
Biomass Policies (www.biomasspolices.eu accessed on 4 April 2022) | Compiled cost supply information for oil, starch, and lignocellulosic biomass with geographic disaggregation at NUTS2-State level | Oil and lignocellulosic biomass crops Yields and cost information at national and regional level |
S2Biom (www.s2biom.eu accessed on 4 April 2022) | Gathered cost supply information on fifty lignocellulosic biomass types for EU 27, UK, Western Balkans, Moldova, Ukraine and Turkey (NUTS3-level) | |
MAGIC (www.magic-h2020.eu accessed on 4 April 2022) | Aimed to research the sustainable development of resource-efficient and economically profitable industrial crops grown on marginal lands | Yields and costs in land with natural constraints |
PANACEA (www.panacea-project.eu accessed on 4 April 2022) | Was a thematic network for non-food crops into European agriculture as raw materials for bioenergy and bioeconomy | Yields and TRL level |
BIO4A (www.bio4a.eu accessed on 4 April 2022) | Is investigating the use of biochar and co-composted organic matter in very arid soils in Spain, while applying at the same time sustainable rotations between food/feed and energy crops, i.e., barley and camelina | Cultivation in land with natural constraints and application of biochar |
SoilCare (www.soilcare-project.eu accessed on 4 April 2022) | Identified and evaluated promising soil-improving cropping systems and agronomic techniques increasing profitability and sustainability across scales in Europe | Sustainable agricultural practices |
TRL | Scale of Technological Readiness Level | |
---|---|---|
TRL > 7 | +++ |
|
TRL5–7 | ++ |
|
TRL3–5 | + |
|
TRL < 3 | - |
|
Relevant Biofuels (Sectors) | Agricultural Practices | Average Baseline Yields (t/ha Seeds for Oil Crops and t/ha Dry Matter Biomass for Lignocellulosic Ones) per AEZ (in Parenthesis Yields in Land with Natural Constraints) | Productivity/Ability to Use Existing Machinery | Expected TRL by 2030 * | ||||
---|---|---|---|---|---|---|---|---|
A | C and B | M | ||||||
Oil | Rapeseed | Hydrotreated vegetable oil (HVO)/renewable diesel, HEFA (aviation, marine, heavy duty) | I, CC, R, B | 4.5 (2) | 4 (2.5) | 3 (1.5) | +++ | +++ |
Ethiopian mustard | B | 3.5 (1) | 4 (1.5) | 2.5 (1.5) | ++ | +++ | ||
Crambe | B | 2 (0.5) | 2.5 (1) | 3 (1) | ++ | +++ | ||
Camelina | I, CC, R, B | 2.5 | 2.5 | 3 (1) | ++ | +++ | ||
Cardoon | B | 3 (1.5) | 3 (1.5) | 3.5 (2) | +++ | +++ | ||
Safflower | I, B | na | 2 (1.5) | 1.5 (0.8) | + | ++ | ||
Castor | I, B | na | na | 3.5 (1.5) | + | ++ | ||
Lignocellulosic | Willow | Ethanol, methanol, butanol, Synthetic fuel Hydrotreated bio-oil/biocrude (aviation, marine, heavy duty) | AF. B | 12 (9) | 12 (9) | 13 (8) | ++ | +++ |
Poplar | AF, B | 10 (8) | 10 (8.5) | 10 (7.5) | ++ | +++ | ||
Biomass sorghum | I, R, B | 15 (9) | 15 (9) | 20 (12) | ++ | +++ | ||
Tall wheat grass | B | na | na | 10 (7) | + | ++ | ||
Miscanthus | B | 12 (8) | 15 (9) | 20 (9) | +++ | +++ | ||
Switchgrass | B | 18 (10) | 18 (10) | 20 (12) | ++ | +++ | ||
Cardoon | B | 14 (8) | 20 (10) | ++ | +++ | |||
Giant reed | B | 15 (9) | 15 (9) | 20 (10) | ++ | +++ | ||
Reed canary grass | B | 15 (9) | 15 (9) | 20 (10) | ++ | +++ |
Profitability (€/Tonne Seed) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Farming Land | Land with Natural Constraints | |||||||||||
Low Yield | Average Yield | High Yield | Low Yield | Average Yield | High Yield | |||||||
Market price | 300 €/tonne | 450 €/tonne | 300 €/tonne | 450 €/tonne | 300 €/tonne | 450 €/tonne | 300 €/tonne | 450 €/tonne | 300 €/tonne | 450 €/tonne | 300 €/tonne | 450 €/tonne |
Rapeseed | 107 | 257 | 162 | 312 | 204 | 354 | −130 | 20 | 13 | 163 | 85 | 235 |
Ethiopian mustard | 67 | 217 | 167 | 317 | 202 | 352 | −91 | 59 | 39 | 189 | 105 | 255 |
Crambe | 3 | 153 | 122 | 272 | 191 | 341 | −175 | −25 | −17 | 133 | 110 | 260 |
Camelina | −32 | 118 | 101 | 251 | 160 | 310 | −225 | −75 | −50 | 100 | 20 | 170 |
Cardoon | 46 | 196 | 119 | 269 | 175 | 325 | −264 | −114 | 18 | 168 | 74 | 224 |
Profitability (€/Tonne Dry Biomass) | ||||||||||||
Market price | 50 €/tonne | 100 €/tonne | 50 €/tonne | 100 €/tonne | 50 €/tonne | 100 €/tonne | 50 €/tonne | 100 €/tonne | 50 €/tonne | 100 €/tonne | 50 €/tonne | 100 €/tonne |
Willow | 7 | 93 | 18 | 82 | 22 | 78 | −8 | 108 | 0 | 100 | 6 | 94 |
Poplar | −48 | 52 | −41 | 59 | −32 | 68 | −70 | 30 | −60 | 40 | −42 | 58 |
Biomass sorghum | 4 | 96 | 11 | 89 | 16 | 84 | −5 | 95 | 2 | 98 | 5 | 95 |
Tall wheat grass | 5 | 95 | 13 | 87 | 18 | 82 | 2 | 98 | 17 | 83 | 18 | 82 |
Miscanthus | −11 | 89 | −4 | 96 | 5 | 95 | −24 | 76 | −13 | 87 | −10 | 90 |
Switchgrass | −43 | 57 | −35 | 65 | −25 | 75 | −76 | 24 | −56 | 44 | −40 | 60 |
Cardoon | −43 | 57 | −35 | 65 | −25 | 75 | −76 | 24 | −56 | 44 | −40 | 60 |
Giant reed | −34 | 66 | −37 | 137 | −29 | 129 | −60 | 160 | −48 | 148 | −39 | 139 |
Reed canary grass | 7 | 93 | 18 | 82 | 22 | 78 | −8 | 108 | 0 | 100 | 6 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsou, C.; Giarola, S.; Ibrahim, D.; Verzandvoort, S.; Elbersen, B.; Sandford, C.; Malins, C.; Politi, M.; Vourliotakis, G.; Zita, V.E.; et al. Opportunities for Low Indirect Land Use Biomass for Biofuels in Europe. Appl. Sci. 2022, 12, 4623. https://doi.org/10.3390/app12094623
Panoutsou C, Giarola S, Ibrahim D, Verzandvoort S, Elbersen B, Sandford C, Malins C, Politi M, Vourliotakis G, Zita VE, et al. Opportunities for Low Indirect Land Use Biomass for Biofuels in Europe. Applied Sciences. 2022; 12(9):4623. https://doi.org/10.3390/app12094623
Chicago/Turabian StylePanoutsou, Calliope, Sara Giarola, Dauda Ibrahim, Simone Verzandvoort, Berien Elbersen, Cato Sandford, Chris Malins, Maria Politi, George Vourliotakis, Vigh Enikő Zita, and et al. 2022. "Opportunities for Low Indirect Land Use Biomass for Biofuels in Europe" Applied Sciences 12, no. 9: 4623. https://doi.org/10.3390/app12094623
APA StylePanoutsou, C., Giarola, S., Ibrahim, D., Verzandvoort, S., Elbersen, B., Sandford, C., Malins, C., Politi, M., Vourliotakis, G., Zita, V. E., Vásáry, V., Alexopoulou, E., Salimbeni, A., & Chiaramonti, D. (2022). Opportunities for Low Indirect Land Use Biomass for Biofuels in Europe. Applied Sciences, 12(9), 4623. https://doi.org/10.3390/app12094623