Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumentation
2.3. HPLC-MS/MS Analysis
2.4. Preparation of Zeolite H-Beta Sorbent
2.5. DSPE Process
2.6. Sample Collection
3. Results and Discussion
3.1. Characterization of Prepared Zeolite H-Beta
3.2. Optimization of DSPE Conditions
3.2.1. Effect of the Amount of Zeolite H-Beta
3.2.2. Effect of the Adsorption Time
3.2.3. Effect of the Desorption Solvent, Mode, and Time
3.2.4. Matrix Effects
3.3. Reusability of the Sorbent
3.4. Method Validation
3.5. Method Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 2003, 48, 339–364. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R. Neonicotinoids—from zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. [Google Scholar] [CrossRef]
- David, G. A common pesticide decreases foraging success and survival in honey bees: Questioning the ecological relevance. Front. Physiol. 2013, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, Z.; Wang, S.; Hong, S.; Li, H.; Zhang, C.; Shao, Y.; She, Y.; Jin, F.; Jin, M.; et al. Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples. J. Chromatogr. B 2018, 1077–1078, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Anadón, A.; Wu, Q.; Qiao, F.; Ares, I.; Martinez-Larrañaga, M.; Yuan, Z.; Martínez, M.-A. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 471–507. [Google Scholar] [CrossRef] [PubMed]
- European Union Pesticide Database. Current MRLs Values. Active Substances Detail. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/ (accessed on 30 May 2021).
- GB23200.7—2016; Ministry of Agriculture of the People’s Republic of China, Beijing, National Food Safety Standards-Determination of 497 Pesticides and Related Chemicalsresiduesin Honey, Fruit Juice and Wine Gaschromatography-Mass Spectrometry. 2016. Available online: http://down.foodmate.net/standard/yulan.php?itemid=50178 (accessed on 13 April 2022).
- Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta 2017, 164, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwanz, T.G.; Carpilovsky, C.K.; Weis, G.C.C.; Costabeber, I.H. Validation of a multi-residue method and estimation of measurement uncertainty of pesticides in drinking water using gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2019, 1585, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ye, D.; Li, X.; Jia, Y.; Zhao, L.; Liu, S.; Xu, J.; Du, J.; Tian, L.; Li, J.; et al. Occurrence of pharmaceuticals and personal care products in bottled water and assessment of the associated risks. Environ. Int. 2021, 155, 106651. [Google Scholar] [CrossRef]
- Fidente, P.; Seccia, S.; Vanni, F.; Morrica, P. Analysis of nicotinoid insecticides residues in honey by solid matrix partition clean-up and liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A 2005, 1094, 175–178. [Google Scholar] [CrossRef]
- Muccio, A.D.; Fidente, P.; Barbini, D.A.; Dommarco, R.; Seccia, S.; Morrica, P. Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J. Chromatogr. A 2006, 1108, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Oulkar, D.P.; Dasgupta, S.; Patil, S.B.; Patil, S.H.; Savant, R.; Adsule, P.G. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1173, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Hojaghan, A.S.; Mogaddam, M. Development of Heat-Induced Homogeneous Liquid–Liquid Microextraction for Extraction and Preconcentration of Neonicotinoid Insecticides from Fruit Juice and Vegetable Samples. Food Anal. Methods 2017, 10, 3738–3746. [Google Scholar] [CrossRef]
- Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A.J.; Zhao, H.T.; Zhang, L.; Wang, Z.Y.; Xu, R.B.; Li, W.J. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid–liquid micro-extraction by high performance liquid chromatography. Food Chem. 2012, 134, 1691–1698. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Wu, Q.; Wang, C.; Zang, X.; Wang, Z. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC. Anal. Methods 2012, 4, 766. [Google Scholar] [CrossRef]
- Watanabe, E.; Kobara, Y.; Baba, K.; Eun, H. Determination of Seven Neonicotinoid Insecticides in Cucumber and Eggplant by Water-Based Extraction and High-Performance Liquid Chromatography. Anal. Lett. 2015, 48, 213–220. [Google Scholar] [CrossRef]
- Alder, L.; Greulich, K.; Kempe, G.; Vieth, B. Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS? Mass Spectrom. Rev. 2010, 25, 838–865. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, Z.; Wang, S.; Hong, S.; Li, H.; Shao, Y.; She, Y.; Wang, J.; Jin, F.; Jin, M. One-pot synthesis of magnetic zeolitic imidazolate framework/grapheme oxide composites for the extraction of neonicotinoid insecticides from environmental water samples. J. Sep. Sci. 2017, 40, 4747–4756. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhang, S.; Huai, Q.; Xu, D.; Zhang, H. Methylamine-modified graphene-based solid phase extraction combined with UPLC-MS/MS for the analysis of neonicotinoid insecticides in sunflower seeds. Talanta 2017, 162, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Michelangelo, A.; Lehotay, S.J.; Darinka, Š.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. Aoac Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Chen, C.; Yang, Y. Suspension Dispersive Solid Phase Extraction for Preconcentration and Determination of Cobalt, Copper, and Nickel in Environmental Water by Flame Atomic Absorption Spectrometry. Anal. Lett. 2015, 48, 453–463. [Google Scholar] [CrossRef]
- Wen, Y.; Niu, Z.; Ma, Y.; Ma, J.; Chen, L. Graphene oxide-based microspheres for the dispersive solid-phase extraction of non-steroidal estrogens from water samples. J. Chromatogr. A 2014, 1368, 15–25. [Google Scholar] [CrossRef]
- Hurtado-Sánchez, M.C.; Romero-González, R.; Rodríguez-Cáceres, M.I.; Durán-Merás, I.; Frenich, A.G. Rapid and sensitive on-line solid phase extraction-ultra high performance liquid chromatography-electrospray-tandem mass spectrometry analysis of pesticides in surface waters. J. Chromatogr. A 2013, 1305, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Moral, A.; Sicilia, M.; Rubio, S.; Pérez-Bendito, D. Multifunctional sorbents for the extraction of pesticide multiresidues from natural waters. Anal. Chim. Acta 2008, 608, 61–72. [Google Scholar] [CrossRef]
- Fernández, E.; Vidal, L.; Canals, A. Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography-mass spectrometry. J. Chromatogr. A 2016, 1458, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.M.; Pariente, J.P. Zeolites and Ordered Porous Solids: Fundamentals and Applications; Editorial Universitat Politècnica de València: Valencia, Spain, 2011. [Google Scholar]
- Nezamzadeh-Ejhieh, A.; Raja, G. Modification of Nanoclinoptilolite Zeolite with Hexadecyltrimethylammonium Surfactant as an Active Ingredient of Chromate-Selective Membrane Electrode. J. Chem. 2012, 2013, 685290. [Google Scholar] [CrossRef]
- Hailu, S.L.; Nair, B.U.; Redi-Abshiro, M.; Diaz, I.; Tessema, M. Preparation and Characterization of Cationic Surfactant Modified Zeolite Adsorbent Material for Adsorption of Organic and Inorganic Industrial Pollutants. J. Environ. Chem. Eng. 2017, 5, 3319–3329. [Google Scholar] [CrossRef]
- Mahalakshmi, M.; Priya, S.V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2. J. Hazard. Mater. 2009, 161, 336–343. [Google Scholar] [CrossRef]
- Kalló, D. Applications of Natural Zeolites in Water and Wastewater Treatment. In Natural Zeolites: Occurrence, Properties, Applications; David, L.B., Douglas, W.M., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018; pp. 519–550. [Google Scholar]
- Mohseni-Bandpi, A.; Al-Musawi, T.J.; Ghahramani, E.; Zarrabi, M.; Mohebi, S.; Vahed, S.A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 2012, 200–202, 59–67. [Google Scholar] [CrossRef]
- Rashad, M.; Selim, E.M.; Assaad, F.F. Removal Of Some Environmental Pollutants From Aqueous Solutions By Linde-Zeolite: Adsorption And Kinetic Study. Adv. Environ. Biol. 2012, 6, 1716–1724. [Google Scholar]
- Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides. J. Agric. Food Chem. 2016, 64, 2145–2152. [Google Scholar] [CrossRef]
- Kuechl, D.E.; Benin, A.I.; Knight, L.M.; Abrevaya, H.; Wilson, S.T.; Sinkler, W.; Mezza, T.M.; Willis, R.R. Multiple paths to nanocrystalline high silica beta zeolite. Microporous Mesoporous Mater. 2010, 127, 104–118. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; An, T.; Yue, Y.; Bao, X. Carboxylic acids to butyl esters over dealuminated–realuminated beta zeolites for removing organic acids from bio-oils. RSC Adv. 2017, 7, 33714–33725. [Google Scholar] [CrossRef] [Green Version]
- Soler, C.; Mañes, J.; Picó, Y. Routine application using single quadrupole liquid chromatography-mass spectrometry to pesticides analysis in citrus fruits. J. Chromatogr. A 2005, 1088, 224–233. [Google Scholar] [CrossRef]
- Niessen, W.M.A.; Manini, P.; Andreoli, R. Matrix effects in quantitative pesticide analysis using liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 2010, 25, 881–899. [Google Scholar] [CrossRef]
- Iwafune, T.; Ogino, T.; Watanabe, E. Water-Based Extraction and Liquid Chromatography-Tandem Mass Spectrometry Analysis of Neonicotinoid Insecticides and Their Metabolites in Green Pepper/Tomato Samples. J. Agric. Food Chem. 2014, 62, 2790. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, W.; Wang, S.; Bai, B.; Wu, N.; Ye, T.; Xu, F.; Kong, C. Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. Appl. Sci. 2022, 12, 4316. https://doi.org/10.3390/app12094316
Si W, Wang S, Bai B, Wu N, Ye T, Xu F, Kong C. Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. Applied Sciences. 2022; 12(9):4316. https://doi.org/10.3390/app12094316
Chicago/Turabian StyleSi, Wenshuai, Shouying Wang, Bing Bai, Nan Wu, Tai Ye, Fei Xu, and Cong Kong. 2022. "Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry" Applied Sciences 12, no. 9: 4316. https://doi.org/10.3390/app12094316
APA StyleSi, W., Wang, S., Bai, B., Wu, N., Ye, T., Xu, F., & Kong, C. (2022). Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. Applied Sciences, 12(9), 4316. https://doi.org/10.3390/app12094316