Characterization of Ancient Burial Pottery of Ban Muang Bua Archaeological Site (Northeastern Thailand) Using X-ray Spectroscopies
Abstract
:1. Introduction
Sample | Description | Test Pit | Estimated Date (Years) [24] | |
---|---|---|---|---|
Typology | Thickness (cm) | |||
MB051 | :Body sherd :Plain with red-slipped body sherd | 1.1 | MB’2003 PK.PIT 3 S6W2 Burial jar No 1/63 | 2440 ± 210 to 1490 ± 210 |
MB052 | 1.0 | MB’2003 PK.PIT 3 S3W2-3 Burial jar No. 1/112 | ||
MB054 | 0.8 | MB’2003 PK.PIT 5 N1-2 W1-2 Burial jar No. 187 | ||
MB055 | 0.6 | MB’2003 PK.PIT 5 N2W3 Burial jar No. 188 | ||
MB056 | 0.6 | MB’2003 PK.PIT 2 N2E4 Burial jar No. 132 | ||
MB058 | 0.8 | MB’2003 PK.PIT 4 S2E3 Burial jar No. 123 | ||
MB059 | 1.2 | MB’2003 PK.PIT 4 S2E3 Burial jar No. 119 | ||
MB060 | 1.2 | MB’2003 PK.PIT 4 S2E5-6 Burial jar No. 117 |
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
Sample | Elemental Composition (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | S | P | Cl | K | Ca | Ti | Fe | |
Outer layer | |||||||||||||
Previous | 4.66 | 52.14 | <0.17 | <0.23 | 5.00 | 35.19 | <0.10 | <1.04 | <0.10 | 0.29 | <0.41 | <0.34 | 1.01 |
Present | 3.64 | 52.58 | <0.14 | <0.16 | 6.13 | 33.23 | <1.11 | <0.87 | <0.10 | 0.46 | 0.88 | 0.38 | 1.82 |
Core Previous | 3.99 | 52.19 | 0.12 | <0.10 | 5.68 | 35.05 | <0.10 | 1.04 | <0.10 | 0.30 | 0.44 | 0.33 | 1.15 |
Present | 2.35 | 51.79 | <0.14 | <0.12 | 6.15 | 36.05 | <0.10 | <0.41 | <0.10 | 0.47 | 0.60 | 0.36 | 1.17 |
Inner layer | |||||||||||||
Previous | 5.68 | 51.20 | <0.28 | <0.13 | 6.27 | 32.74 | <0.10 | 1.20 | <0.20 | 0.36 | 0.60 | 0.46 | 1.35 |
Present | 7.85 | 49.42 | <0.16 | <0.14 | 5.66 | 33.34 | <0.10 | 0.51 | <0.11 | 0.48 | 0.71 | 0.36 | 1.00 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaivari, C.; Martini, S.E.; Vandini, M. Thermoluminescence characterization and dating feasibility of ancient glass mosaic. Quat. Sci. Rev. 2001, 20, 967–972. [Google Scholar] [CrossRef]
- Barilaro, D.; Barone, G.; Crupi, V.; Majolino, D.; Mazzoleni, P.; Triscari, M.; Venuti, V. Characterization of ancient amphorae by spectroscopic techniques. Vib. Spectrosc. 2006, 42, 381–386. [Google Scholar] [CrossRef]
- Nakai, I.; Matsunaga, M.; Adachi, M.; Hidaka, K.-I. Application of XAFS in Archaeology. J. Phys. 1997, IV 7, 1033–1034. [Google Scholar] [CrossRef]
- Dararutana, P.; Sirikulrat, N. Scanning electron microscopy investigation of lead-free high refractive indesx glass prepared from local sand used for restoration and conservation. In Modern Research and Educational Topics in Microscopy; Mendez-Vilas, A., Diaz, J., Eds.; Formatex: Badajoz, Spain, 2007; pp. 660–665. [Google Scholar]
- Ramli, Z.; Nu’man Mohd Nasir, M.; Shafiq Mohd Ali, M. Geochemical characterization of pottery shards unearthed from Kampung Baru archaeological site, Kedah, Malaysia. War. Geol. 2021, 47, 9–18. [Google Scholar] [CrossRef]
- Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D’Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G. Silver and copper nanoclusters in te lustre decoration of Italian Renaissance pottery: An EXAFS study. Appl. Phys. A 2004, 79, 229–233. [Google Scholar] [CrossRef]
- Sakdanawat, A.; Attwood, D. Nanoscal X-ray imaging. Nat. Photon. 2010, 4, 840–848. [Google Scholar] [CrossRef]
- Mizuno, S.; Torizu, R.; Sugiyama, J. Wood identification of a wooden mask using synchrotron X-ray microtomography. J. Archaeol. Sci. 2010, 37, 2842–2845. [Google Scholar] [CrossRef]
- Re, A.; Corsi, J.; Demmelbauer, M.; Martini, M.; Mila, G.; Ricci, C. X-ray tomography of a soil block: A useful tool for the restoration of archaeological finds. Herit. Sci. 2015, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Yao, S.; Lang, J.; Chen, X.; Fan, J.; Sun, Z.; Duan, X.; Li, N.; Fang, H.; Zhou, G.; et al. Structural and compositional analysis of a casting mold sherd from ancient China. PLoS ONE 2017, 12, e0174057. [Google Scholar] [CrossRef] [Green Version]
- Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. Applications of synchrotron X-ray nano-probes in the field of cultural heritage. Comptes Rendus Phys. 2018, 19, 575–588. [Google Scholar] [CrossRef]
- Grave, P.; Maccheroni, M. Characterizing Asian stoneware jar productio at the transition to the early modern period (1550–1650 C.E.) in Scientific Research on Historic Asian Ceramics. In Proceedings of the 4th Forbes Symposium, Washington DC, USA, 27–29 September 2007; Archetype Publications in association with the Freer Gallery of Art. Smithsonian Institute: London, UK, 2007; pp. 186–202. [Google Scholar]
- Won-in, K.; Wattanakul, P.; Dararutana, P.; Pongkrapan, S.; Takashima, I.; Ruangrunsri, N.; Singharajwarapan, F.S.; Supajanya, T.; Vichapan, K. Preliminary Study of the Age of the Lanna Period by Thermoluminescence Dating: A Case Study from the Wiang Kaen Ancient Site, Chiang Rai, Northern Thailand. In Proceedings of the International Conference on Geoarchaeology and Archaeomineralogy, Sofia, Bulgaria, 29–30 October 2008; Kostov, R.I., Gaydarska, B., Gurova, M., Eds.; Publishing House “St. Ivan Rilski”: Sofia, Bulgaria; pp. 130–133. [Google Scholar]
- Dararutana, P.; Won-in, K.; Thongkam, Y.; Intarasiri, S.; Thongleurm, C.; Kamwanna, T.; Tancharakorn, S. µ-XRF study on unearthed ancient pottery at Au Thong, Thailand. Acta Cryst. A 2011, 67, C763. [Google Scholar] [CrossRef]
- Tanthanuch, W.; Pattanasiriwisawa, W.; Somphon, W.; Srilomsak, S. Synchrotron studies of Ban Chiang ancient pottery. Suranaree J.Sci. Technol. 2011, 18, 15–28. [Google Scholar]
- Dhanmanonda, W.; Tancharakorn, S.; Won-in, K.; Dararutana, P. µ-XRF study on Islamic luster ware: Feasibility study. Thai J. Phys. 2012, 8, 3. [Google Scholar]
- Won-in, K.; Khaokheiw, C.; Dararutana, P. Thermoluminescence Dating of Maenam Noi Kiln, Central Thailand. In Proceedings of the 8th International Conference on Structural Analysis of Historical Constructions (SAHC 2012), Wroclaw, Poland, 15–17 October 2012; Jasienko, J., Ed.; DWE: Wroclow, Poland; pp. 1347–1350. [Google Scholar]
- Tancharakorn, S.; Tanthanuch, W.; Kamonsutthipaijit, N.; Wongprachanukul, N.; Sophon, M.; Chaichuay, S.; Uthaisar, C.; Yimnirun, R. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory. J. Synchrotron Rad. 2012, 19, 536–540. [Google Scholar] [CrossRef]
- Won-in, K.; Tancharakorn, S.; Dararutana, P. Microanalysis study on ancient Wiangkalong pottery. J. Phys. Conf. Ser. 2017, 901, 012024. [Google Scholar] [CrossRef]
- Nimsuwan, N.; Dutchaneephet, J.; Pakawanit, P.; Dararutana, P.; Won-in, K. Identification of ancient burial ceramics from Ban Muang Bua, northeastern Thailand using SEM-EDS and SR XTM. Malays. J. Microsc. 2019, 15, 83–91. [Google Scholar]
- Indrawooth, P. The practice of jar burial in the Mun and Chi valleys. Bull. Indo-Pac. Assoc. 1996, 16, 149–152. [Google Scholar] [CrossRef]
- White, J.C.; Onsuwan Eyre, C. 5 Residential Burial and the Metal Age of Thailand. Archaeol. Pap. Am. Anthropol. Assoc. 2010, 20, 59–78. [Google Scholar] [CrossRef]
- Sukkham, A. Re-Cataloging SEACM Prehistoric Ceramic Collection. Southeast Asian Ceram. Mus. Newsl. 2016, IX, 1–2. [Google Scholar]
- Baonoed, S. History and Antquities in the Thung Kula Ronghai Area in Thailand; Fine Arts Department: Ubon Ratchathani, Thailand, 2010. (In Thai) [Google Scholar]
- Choun-u-dom, W. Jar Burial Culture in Thung Kula Rong Hai. In Proceedings of the 12th International Conference on Humanities & Social Sciences 2016 (IC-HUSo 2016), Khon Kaen, Thailand, 14–15 November 2016; pp. 2065–2083. [Google Scholar]
- Nimsuwan, N. Geoarchaeology at Ban Muang Bua Archaeological Site, Muang Bua Subdistrict, Kasetwisai District, Roi Et Province. Master’s Thesis, Kasetsart University, Bangkok, Thailand, 2017. [Google Scholar]
- Won-in, K.; Suksawang, S.; Intarasiri, S.; Thongleurm, C.; Kamwanna, T.; Dararutana, P. Characterization of Thai amulets: A PIXE study. Adv. Mater. Res. 2011, 324, 505–508. [Google Scholar] [CrossRef]
- Won-in, K.; Thongkam, Y.; Kamwanna, T.; Dararutana, P. Characterization of prehistoric glass beads excavated from Khao Sam Kaeo (Chumphon, Thailand) using PIXE and SEM-EDS. J. Radioanal. Nucl. Chem. 2012, 294, 247–250. [Google Scholar] [CrossRef]
- Won-in, K.; Suksawang, S.; Intarasiri, S.; Thongleurm, C.; Tippawan, U.; Kamwanna, T.; Dararutana, P. PIXE study on Thai amulet: Phra Somdej Wat Rakhang. J. Radioanal. Nucl. Chem. 2012, 294, 383–386. [Google Scholar] [CrossRef]
- Won-in, K.; Sako, T.; Thongleurm, C.; Intarasiri, S.; Tippawan, U.; Kamwanna, T.; Pattanasiriwisana, W.; Tancharakorn, S.; Kamonsuthipaijit, N.; Dararutana, P. Nuclear analytical methods on ancient Thai rice. J. Radioanal. Nucl. Chem. 2013, 297, 285–290. [Google Scholar] [CrossRef]
- Won-in, K.; Supruangnet, R.; Dararutana, P. Synchrotron radiation study of nitrogen in chemical fertilizer used as explosive: Feasibility study. Proc. SPIE 2020, 11331, 113310F. [Google Scholar]
- Won-in, K.; Dararutana, P. X-ray spectroscopy study of ancient glass beads at Hor-Ek, Thailand. J. Phys. Conf. Ser. 2021, 1719, 012075. [Google Scholar] [CrossRef]
- Boonruang, C.; Won-in, K.; Dararutana, P. SEM-EDS, PIXE and Raman spectroscopies analysis of Khlong Thom ancient glass bead, southern Thailand. J. Phys. Conf. Ser. 2021, 1963, 012038. [Google Scholar] [CrossRef]
- Maxwell, J.A.; Teesdale, W.T.; Campbell, J.L. The Guelph PIXE software package II. Nucl. Instr. Meth. B 1995, 95, 407–421. [Google Scholar] [CrossRef]
- Campbell, J.L.; Boyd, N.; Grassi, N.; Bonnick, P.; Maxwell, J.A. The Guelph PIXE software package IV. Nucl. Instr. Meth. B 2010, 268, 3356–3363. [Google Scholar] [CrossRef]
- Carmona, N.; Ortega-Feliu, I.; Gomez-Tubio, B.; Villegas, M.A. Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterisation of glasses. Mater. Charact. 2010, 61, 257–267. [Google Scholar] [CrossRef]
- Boonruang, C.; Won-in, K.; Tancharakorn, S.; Pakawanit, P.; Thumanu, K.; Dararutana, P. Synchrotron radiation study on ancient burnt rice found at archaeological sites in Thailand. Chiang Mai J. Sci. 2022, 49, 1–13. [Google Scholar] [CrossRef]
- Krapukaitypte, J.; Pakutinskiene, I.; Tautkus, S.; Kareiva, A. SEM and EDX characterization of ancient pottery. Lith. J. Phys. 2006, 46, 383–388. [Google Scholar] [CrossRef]
- Paranivel, R.; Meyvel, S. Microstructural and microanalytical study-(SEM) of archaeological pottery artefacts. Rom. J. Phys. 2010, 55, 333–341. [Google Scholar]
- Gasparic, A.Z.; Horvat, M.; Mitric, B. Ceramic petrography, mineralogy and typology of Eneolithic pottery from Kransnja, Slovenis. Praehistorica 2014, XLI, 225–236. [Google Scholar]
- Pillay, A.E.; Punyadeera, C.; Jacobson, L.; Erikson, K. Analysis of ancient pottery and ceramic objects using X-ray fluorescence spectrometry. X-ray Spectrom. 2000, 29, 53–62. [Google Scholar] [CrossRef]
- Maggetti, M. Chemical analyses of ancient ceramics: What for? Chimia 2001, 55, 923–930. [Google Scholar]
- Zlateva, B.; Dumanov, B.; Rangelov, M. Applications of soil phosphate analysis of activity areas at Doschkere, SE Bulgaria. J. Hist. Archaeol. Anthropol. Sci. 2018, 3, 57–60. [Google Scholar]
- Jacobson, H.S.; Pierson, C.; Danusawad, T.; Japakkastr, T.; Inthuputi, B.; Siriratanamongkol, C.; Prapassornkul, S.; Pholphann, N. Maineral Investigation in Northeastern Thailand; United States Government Printing Office: Washington, DC, USA, 1969.
- O’Reilly, D.J.W.; Scott, G. Moated sites of the Iron Age in the Mun River Valley Thailand: New dicoveries using Google Earth. Archaeol. Res. Asia. in press. [CrossRef]
- O’Reilly, D.J.W. From the Bronze Age to the Iron Age in Thailand: Applying the Heterachical Approach. Asian Perspect. 2000, 39, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dhanmanonda, W.; Hongrittipun, P.; Aussavamas, D. Petrographic analysis of ceramic artifacts from Ban Di Kiln, Pattani province, Thailand. J. Met. Mater. Miner. 2016, 26, 13–20. [Google Scholar]
Sample | Layer | Elemental Composition (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | S | P | Cl | K | Ca | Ti | Fe | ||
MB051 | a | 2.41 | 50.30 | 0.13 | 0.14 | 7.03 | 37.19 | N/A | 0.29 | N/A | 0.25 | 0.38 | 0.40 | 1.47 |
b | 3.21 | 51.14 | N/A | 0.12 | 5.76 | 37.11 | N/A | 0.64 | N/A | 0.24 | 0.43 | 0.34 | 1.01 | |
c | 7.03 | 49.54 | 0.16 | 0.15 | 6.59 | 34.22 | N/A | 0.21 | N/A | 0.23 | 0.28 | 0.38 | 1.20 | |
MB052 | a | 5.59 | 54.60 | N/A | 0.12 | 7.17 | 27.10 | N/A | 0.15 | N/A | 0.20 | 0.58 | 0.40 | 3.70 |
b | 2.88 | 53.07 | N/A | N/A | 7.06 | 32.92 | N/A | 0.53 | N/A | 0.24 | 0.74 | 0.45 | 1.57 | |
c | 5.60 | 52.42 | 0.12 | N/A | 7.22 | 31.93 | N/A | 0.40 | N/A | 0.18 | 0.67 | 0.42 | 1.04 | |
MB054 | a | 1.30 | 52.72 | 0.15 | N/A | 5.92 | 36.39 | N/A | 0.46 | N/A | 0.51 | 0.94 | 0.43 | 1.20 |
b | 3.49 | 52.08 | 0.11 | 0.08 | 5.97 | 36.04 | N/A | 0.15 | N/A | 0.32 | 0.77 | 0.22 | 0.76 | |
c | 10.08 | 48.26 | 0.26 | 0.22 | 5.91 | 29.17 | N/A | 0.11 | N/A | 1.06 | 0.74 | 0.26 | 0.92 | |
MB055 | a | 1.73 | 49.25 | 0.14 | N/A | 4.34 | 41.63 | N/A | 0.30 | N/A | 0.79 | 0.60 | 0.31 | 0.90 |
b | 2.50 | 50.50 | 0.19 | 0.10 | 5.07 | 38.81 | N/A | 0.31 | N/A | 0.69 | 0.60 | 0.26 | 0.97 | |
c | 3.73 | 51.95 | 0.18 | N/A | 5.55 | 36.08 | N/A | 0.24 | N/A | 0.61 | 0.53 | 0.24 | 0.89 | |
MB056 | a | 4.05 | 55.28 | N/A | N/A | 6.20 | 25.21 | N/A | 3.78 | N/A | 0.37 | 1.15 | 0.31 | 3.65 |
b | 3.41 | 51.06 | N/A | N/A | 5.27 | 36.95 | N/A | 0.75 | N/A | 0.33 | 0.63 | 0.36 | 1.24 | |
c | 8.69 | 49.28 | 0.13 | 0.16 | 5.03 | 32.54 | N/A | 1.28 | N/A | 0.43 | 0.75 | 0.34 | 1.38 | |
MB058 | a | 5.15 | 51.86 | 0.12 | N/A | 6.16 | 33.33 | N/A | 0.46 | N/A | 0.50 | 0.84 | 0.57 | 1.01 |
b | 3.02 | 51.19 | N/A | N/A | 6.11 | 36.63 | N/A | 0.28 | N/A | 0.42 | 0.70 | 0.49 | 1.15 | |
c | 14.33 | 46.06 | 0.11 | 0.12 | 6.37 | 28.89 | N/A | 0.95 | 0.13 | 0.49 | 0.83 | 0.56 | 1.16 | |
MB059 | a | 5.92 | 52.86 | N/A | 0.15 | 4.95 | 32.20 | N/A | 0.63 | 0.09 | 0.55 | 1.68 | 0.34 | 1.25 |
b | 1.92 | 50.96 | N/A | 0.12 | 5.16 | 39.18 | N/A | 0.18 | N/A | 0.56 | 0.69 | 0.34 | 0.89 | |
c | 2.45 | 51.31 | 0.14 | 0.11 | 4.70 | 38.27 | N/A | 0.57 | N/A | 0.50 | 0.83 | 0.30 | 0.81 | |
MB060 | a | 2.95 | 53.74 | N/A | 0.20 | 7.21 | 32.77 | 1.11 | N/A | 0.11 | 0.46 | 0.85 | 0.27 | 1.34 |
b | 1.21 | 52.20 | 0.12 | 0.14 | 7.22 | 36.03 | N/A | N/A | N/A | 0.59 | 0.59 | 0.33 | 1.07 | |
c | 10.82 | 46.47 | N/A | 0.19 | 3.87 | 35.56 | N/A | 0.32 | 0.09 | 0.28 | 1.02 | 0.33 | 0.55 | |
Average | a | 3.64 | 52.58 | <0.14 | <0.16 | 6.13 | 33.23 | <1.11 | <0.87 | <0.10 | 0.46 | 0.88 | 0.38 | 1.82 |
b | 2.35 | 51.79 | <0.14 | <0.12 | 6.15 | 36.05 | <0.10 | <0.41 | <0.10 | 0.47 | 0.60 | 0.36 | 1.17 | |
c | 7.85 | 49.42 | <0.16 | <0.14 | 5.66 | 33.34 | <0.10 | 0.51 | <0.11 | 0.48 | 0.71 | 0.36 | 1.00 |
Sample | Layer | Content of Element (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sc | V | Cr | Mn | Co | Ni | Cu | Zn | Ga | Zr | ||
MB051 | a | N/A | N/A | N/A | 2.9 | N/A | N/A | N/A | N/A | 22.8 | 89.1 |
b | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7.3 | N/A | N/A | |
c | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 8.7 | 12.2 | N/A | |
MB052 | a | 13.2 | 13.6 | N/A | 20.0 | 27.1 | N/A | N/A | 14.6 | N/A | N/A |
b | N/A | 5.5 | N/A | 2.5 | N/A | N/A | N/A | 6.9 | 9.3 | N/A | |
c | N/A | N/A | N/A | 18.7 | N/A | 9.1 | 8.7 | 23.1 | N/A | N/A | |
MB054 | a | 77.7 | N/A | N/A | 35.4 | 28.6 | N/A | N/A | N/A | 9.3 | N/A |
b | 12.6 | N/A | N/A | 25.9 | N/A | N/A | N/A | 7.3 | N/A | N/A | |
c | N/A | N/A | N/A | 73.0 | 19.0 | N/A | N/A | 6.5 | N/A | N/A | |
MB055 | a | N/A | 3.8 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
b | N/A | N/A | N/A | N/A | N/A | N/A | 9.9 | 10.5 | N/A | N/A | |
c | N/A | 23.1 | 6.0 | 11.2 | 31.4 | N/A | N/A | N/A | N/A | N/A | |
MB056 | a | 8.2 | N/A | 6.8 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
b | 7.5 | N/A | 4.9 | N/A | N/A | 10.5 | N/A | N/A | N/A | N/A | |
c | 12.4 | N/A | 8.1 | N/A | N/A | N/A | N/A | N/A | 7.2 | N/A | |
MB058 | a | N/A | 4.8 | N/A | N/A | N/A | 6.0 | 6.7 | 7.9 | N/A | N/A |
b | N/A | N/A | 6.7 | 29.6 | N/A | 11.3 | N/A | 12.2 | N/A | N/A | |
c | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 9.5 | N/A | N/A | |
MB059 | a | 3.1 | N/A | N/A | 1.8 | N/A | N/A | N/A | N/A | N/A | N/A |
b | N/A | 19.5 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | |
c | 16.6 | N/A | N/A | 5.8 | N/A | N/A | N/A | N/A | 7.2 | N/A | |
MB060 | a | N/A | N/A | 9.1 | 43.7 | N/A | N/A | 8.8 | 7.3 | 7.2 | N/A |
b | N/A | 9.6 | N/A | N/A | N/A | 10.1 | N/A | 10.3 | N/A | N/A | |
c | N/A | N/A | N/A | 8.2 | N/A | N/A | N/A | N/A | N/A | N/A |
Sample | Side | Porosity (%) | ||
---|---|---|---|---|
Open | Closed | Total | ||
MB051 (Very thin inner layer) | Outer layer | 15.1 | 0.6 | 15.7 |
Core | 9.3 | 1.0 | 10.3 | |
Inner layer | 11.6 | 0.7 | 12.4 | |
MB055 (Very thin outer and inner layers) | Outer layer–core junction | 5.3 | 1.0 | 6.2 |
Core | 4.5 | 0.8 | 5.0 | |
Core–inner layer junction | 1.0 | 1.2 | 2.1 | |
MB056 (Thin outer and inner layers) | Outer layer | 1.6 | 1.1 | 2.7 |
Core | 1.9 | 0.8 | 2.7 | |
Core–inner layer | 2.5 | 0.9 | 3.3 | |
Inner layer | 0.5 | 0.8 | 1.2 | |
MB059 (Thin outer and inner layers) | Outer–core junction | 1.4 | 0.6 | 2.0 |
Core | 5.6 | 1.4 | 6.0 | |
Core–inner junction | 1.0 | 0.8 | 1.8 | |
Inner layer | 0.1 | 0.2 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonruang, C.; Won-in, K.; Nimsuwan, N.; Pakawanit, P.; Tippawan, U.; Thongleurm, C.; Dararutana, P. Characterization of Ancient Burial Pottery of Ban Muang Bua Archaeological Site (Northeastern Thailand) Using X-ray Spectroscopies. Appl. Sci. 2022, 12, 2568. https://doi.org/10.3390/app12052568
Boonruang C, Won-in K, Nimsuwan N, Pakawanit P, Tippawan U, Thongleurm C, Dararutana P. Characterization of Ancient Burial Pottery of Ban Muang Bua Archaeological Site (Northeastern Thailand) Using X-ray Spectroscopies. Applied Sciences. 2022; 12(5):2568. https://doi.org/10.3390/app12052568
Chicago/Turabian StyleBoonruang, Chatdanai, Krit Won-in, Nontarat Nimsuwan, Phakkhananan Pakawanit, Udomrat Tippawan, Chome Thongleurm, and Pisutti Dararutana. 2022. "Characterization of Ancient Burial Pottery of Ban Muang Bua Archaeological Site (Northeastern Thailand) Using X-ray Spectroscopies" Applied Sciences 12, no. 5: 2568. https://doi.org/10.3390/app12052568
APA StyleBoonruang, C., Won-in, K., Nimsuwan, N., Pakawanit, P., Tippawan, U., Thongleurm, C., & Dararutana, P. (2022). Characterization of Ancient Burial Pottery of Ban Muang Bua Archaeological Site (Northeastern Thailand) Using X-ray Spectroscopies. Applied Sciences, 12(5), 2568. https://doi.org/10.3390/app12052568