Estimating the Radioactive Heat Production of a Granitic Rock in the University of A Coruña (Galicia, Northwest Spain) by Gamma-ray Spectrometry
Abstract
:1. Introduction
1.1. Radiogenic Heat Production
1.2. Aim of the Study
2. Study Area
3. Materials and Methods
3.1. Sampling and Data Acquisition
3.2. In Situ Gamma-Ray Spectrometry
3.3. Geochemical Analyses
3.4. Geographic Information System
4. Results
4.1. Geochemical Analyses
4.2. Geothermal Potential
4.3. Geothermal Potential Map
5. Discussion
5.1. Geochemical Analyses
5.2. Geothermal Potential
6. Conclusions
- (1)
- The geochemical analyses of the subsoil rock of the campus indicated that the contents of U, Th, and K are very high—above the expected range for granodiorites and peraluminous granites. The values obtained seemed to fluctuate slightly, and to a greater extent in some areas, due to the heterogeneity of the rock and, partially, to its weathering. In areas of greater weathering, there seemed to be enrichment in U and Th, along with a slight depletion in K.
- (2)
- The comparison of geochemical analyses of U, Th, and K with the data obtained by GRS, both with and without a collimator, showed a good correlation—especially for Th—albeit there was some overestimation. The worst correlation was observed for K.
- (3)
- The RHP values obtained from the geochemical and GRS data were very similar and high at almost all of the sampling points. This indicates that GRS is a fast, inexpensive, and accurate tool for the study of RHP in rocks using data taken from the surface. There was some overestimation; hence, further studies are required, with the aim of establishing some safety criteria, but these results are promising from the perspective of GRS as an exploration tool for delineating the more interesting target areas.
- (4)
- From the geochemical data, the average RHP obtained was 6.54 μW m−3 (±2.06 μW m−3). This implies a high RHP in almost the entire campus; therefore, this is an energy resource whose exploitation would be profitable to obtain usable heat for heating systems and sanitary running water in the campus buildings.
- (5)
- The granitoids studied in this work extend over almost the entire city of A Coruña and constitute an abundant type of rock in northwest Spain and northern Portugal, indicating that the RHP is probably high in this area and should be studied in detail for the use of geothermal energy in this territory.
Author Contributions
Funding
Conflicts of Interest
References
- Vitorello, I.; Pollack, H. On the variation of continental heat flow with age and the thermal evolution of the continents. J. Geophys. Res. 1980, 85, 983–995. [Google Scholar] [CrossRef]
- Pollack, H.; Chapman, D. Mantle heat flow. Earth Planet Sci. Lett. 1977, 34, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Cloetingh, S.; Van Wees, J.D.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Worum, G. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for enhanced geothermal systems exploration in Europe. Earth Sci. Rev. 2010, 102, 159–206. [Google Scholar] [CrossRef] [Green Version]
- Hählein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 2013, 59, 914–925. [Google Scholar] [CrossRef]
- Hébert, R.L.; Ledésert, B.; Bartier, D.; Dezayes, C.; Genter, A.; Grall, C. The enhanced geothermal system of Soultz-Sous-Forêts: A study of the relationships between fracture zones and calcite content. J. Volcanol. Geotherm. Res. 2010, 196, 126e33. [Google Scholar] [CrossRef]
- EU Directive 2009/28/EC of the European Parliament and the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028 (accessed on 6 January 2022).
- IDEA. Evaluación del potencial de energía geotérmica. In Estudio Técnico PER 2011–2020; Instituto para la Diversificación y Ahorro de Energía: Madrid, Spain, 2011. [Google Scholar]
- Chamorro, C.R.; García-Cuesta, J.L.; Mondéjara, M.E.; Linares, M.M. An estimation of the enhanced geothermal systems potential for the Iberian Peninsula. Renew. Energy 2014, 66, 1–14. [Google Scholar] [CrossRef]
- EGEC. The geothermal energy market grows exponentially, but needs the right market conditions to thrive. In EGEC Releases the European Geothermal Market Report 2019; European Geothermal Energy Council: Brussels, Belgium, 2020; Available online: https://www.egec.org/the-geothermal-energy-market-grows-exponentially-but-needs-the-right-market-conditions-to-thrive/ (accessed on 6 January 2020).
- EGEC. Renewables—Global Status Report REN21. Renewable Energy Policy Network for the 21st Century. European Geothermal Energy Council, 2009. Available online: https://www.unep.org/resources/report/renewables-2021-global-status-report (accessed on 2 November 2022).
- IGME. Inventario General de Manifestaciones Geotérmicas en el Territorio Nacional. Plan Nacional de Minería; Ministerio de Industria: Tokyo, Japan, 1975. [Google Scholar]
- VDI 4640 Blatt 2: 2001-09 Thermische Nutzung des Untergrundes; Erdgekoppelte Wärmepumpenanlagen (Thermal Use of the Underground Ground Source Heat Pump Systems). Verein Deutscheringenieure. Available online: https://www.beuth.de/de/technische-regel/vdi-4640-blatt-2/43607817 (accessed on 6 August 2020).
- Sanjurjo-Sánchez, J.; Barrientos Rodríguez, V. Reevaluación del potencial geotérmico de los granitos de Galicia en base a cartografía geoquímica y radiológica. Cad. Lab. Xeolóxico Laxe 2018, 40, 123–138. [Google Scholar] [CrossRef]
- MARNA. Mapa de Radiación Gamma de España. Escala 1:1.000.000; Consejo de Seguridad Nuclear: Madrid, Spain, 2001. [Google Scholar]
- Consejo de Seguridad Nuclear. Cartografía de Potencial de Radón de España. Escala 1:200.000; Consejo de Seguridad Nuclear: Madrid, Spain, 2017. [Google Scholar]
- IGME. Atlas Geoquímico de España; Instituto Geológico y Minero de España: Madrid, Spain, 2012. [Google Scholar]
- Vilà, M.; Fernández, M.; Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 2010, 490, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Artemieva, I.M.; Thybo, H.; Jakobsen, K.; Sørensen, N.K.; Nielsen, L.S.K. Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Sci. Rev. 2017, 172, 1–26. [Google Scholar] [CrossRef]
- Hasterok, D.; Webb, J. On the radiogenic heat production of igneous rocks. Geosci. Front. 2017, 8, 919–940. [Google Scholar] [CrossRef]
- Cuesta, A.; Gallastegui, G. Magmatismo de la Zona Centroibérica: Galicia occidental. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 96–100. [Google Scholar]
- Cermak., V.; Huckenholz, H.G.; Rybach, L.; Shmid, R.; Schopper, J.R.; Schuch, M.; Stöffler, D.; Wohlenberg, J. Thermal properties: Thermal conductivity and specific heat of minerals and rocks. In Landolt-Brnstein Zahlenwerte und funktionen aus Naturwissenschaften und Technik. Neue Serie, Physikalische Eigenschaften der Gesteine; Angeneister, G., Ed.; Spriger: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; pp. 305–343. [Google Scholar]
- Rybach, L. Determination of heat production rate. In Handbook of Terrestrial Heat Flow Determination; Rybach, R., Rybach, L., Stegena, L., Eds.; Kluwer: Dordrecht, The Netherlands, 1988; pp. 125–142. [Google Scholar]
- Rybach, L. Radioactive Heat Production: A Physical Property Determined by the Chemistry in the Physical and Chemistry of Minerals and Rocks; Strens, R.G.J., Ed.; A Wiley-Interscience Publication: New York, NY, USA, 1976. [Google Scholar]
- Ashwal, L.; Morgan, P.; Kelley, S.; Percival, J. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth Planet Sci. Lett. 1987, 85, 439–450. [Google Scholar] [CrossRef]
- Singh, A.K.; Vallinayagam, G. Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area of Malani Igneous Suite, Western Rajasthan, India. Proc. Ind. Acad. Sci. (Earth Planet. Sci. ) 2004, 113, 667–681. [Google Scholar] [CrossRef] [Green Version]
- Darnley, A. A Global Geochemical Database for Environmental and Resource Management; UNESCO Publishing: Ottawa, SO, Canada, 1995; p. 122. [Google Scholar]
- Gascoyne, M. Geochemistry of the actinides and their daughters. In Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences; Ivanovich, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, UK, 1992; pp. 34–61. [Google Scholar]
- Erdi-Krausz, G.; Matolin, M.; Minty, B.; Nicolet, J.; Reford, W.; Schetselaar, E. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- McCay, A.T.; Harley, T.L.; Younger, P.L.; Sanderson, D.C.W.; Cresswell, A.J. Gamma-ray spectrometry in geothermal exploration: State of the art techniques. Energies 2014, 7, 4757–4780. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Corretgé, L.G.; De la Rosa, J.; Enrique, P.; Martínez, F.J.; Pascual, E.; Lago, M.; Arranz, E.; Galé, C.; Fernández, C.; et al. Palaeozoic Magmatism. In The Geology of Spain; Gibbons, W., Moreno, T., Eds.; Geological Society of London: London, UK, 2022; pp. 117–153. [Google Scholar]
- Bellido Mulas, F.; González Lodeiro, F.; Klein, E.; Martínez Catalán, J.R.; Pablo Macía, J.G. Las rocas graníticas hercínicas del norte de Galicia y occidente de Asturias. Memorias Instituto Geológico y Minero de España, t. 101; IGME: Madrid, Spain, 1987; 157p. [Google Scholar]
- Cuesta, A. Petrología granítica del plutón de Caldas de Reyes (Pontevedra, España) Estructura, mineralogía, química y petrogénesis. Nova Terra O Castro 1991, 5, 363. [Google Scholar]
- IGME. Mapa Geológico de España 1:50.000 MAGNA; Instituto Geológico y Minero de España: Madrid, Spain, 2015; Available online: https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=92d3a8e400b44daf911907d3d7c8c7e9 (accessed on 15 October 2022).
- Agencia de Ecología Urbana de Barcelona, Diagnose Enerxética, Campus de Elviña e da Zapateira, Universidade da Coruña, 2010
- cnig-IGN. MDT05-LiDAR Digital Terrain Models, Sh eets H0021 and H0045. In Centro Nacional de Información Geográfica; Instituto Geográfico Nacional: Madrid, Spain, 2009; Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 15 October 2022).
- Best, M.G.; Christiansen, E.H. Igneous Petrology; Blackwell Science: Oxford, UK, 2001; 458p. [Google Scholar]
- Irfan, T.Y.; Dearman, W.R. Engineering classification and index properties of a weathered granite. Bull. Int. Assoc. Eng. Geol. 1978, 17, 79–90. [Google Scholar] [CrossRef]
- Boyle, R.W. Geochemical Propecting for Thorium and Uranium Deposits; Elsevier: New York, NY, USA, 1982; 489p. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Hoboken, NJ, USA, 1985; p. 312. [Google Scholar]
- Lima, M.; Alves, C.; Sanjurjo-Sanchez, J. Gamma radiation in rocks used as building materials: The braga granite (Nw Portugal). Cad. Lab. Xeolóxico Laxe 2015, 38, 81–93. [Google Scholar] [CrossRef]
- Hall, A. Igneous Petrology, 2nd ed.; Longman Limited: Essex, UK, 1996; 551p. [Google Scholar]
- Clarke, D.B. Granitoid Rocks, 1st ed.; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Couto, M.; Sanjurjo-Sanchez, J.; Alves, C. Advances in Materials Science and Engineering Assessment of Gamma Radiation Hazards Related to Geologic Materials: Comparison of Results by Field Gamma Spectrometry and Laboratory Methods. Adv. Mater. Scid. Eng. 2018, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dias, F.; Lima, M.; Sanjurjo-Sanchez, J.; Alves, C. Analysis of spectra from portable handheld gamma-ray spectrometry for terrain comparative assessment. J. Environ. Radioact 2016, 154, 93–100. [Google Scholar] [CrossRef] [PubMed]
Sample | Latitude | Longitude | WD | Location |
---|---|---|---|---|
P1 | 43°19′31.19″ S | 8°24′31.6″ W | I | Back of the Professors′ building in Faculty of Philology |
P2 | 43°19′37.78″ S | 8°24′27.48″ W | I | Slope between Faculties of Philology and Sciences |
P3 | 43°19′43.98″ S | 8°24′26.4″ W | I | Beside Casa del Francés |
P4 | 43°19′34.81″ S | 8°24′35.39″ W | I | Beside Faculty of Sciences |
P5 | 43°20′8.71″ S | 8°25′0.23″ W | I | Beside UDC kindergarten |
P6 | 43°20′1.72″ S | 8°24′56.7″ W | I | Car park of Faculties of Law and Education |
P7 | 43°19′58.71″ S | 8°24′30.59″ W | II | Back of CICA building |
P8 | 43°19′33.25″ S | 8°24′33.09″ W | II | Southwest of Faculty of Sciences |
P9 | 43°19′41.17″ S | 8°24′50.83″ W | II | Surroundings of Castro de Elviña archaeological site |
P10 | 43°19′58.71″ S | 8°24′34.59″ W | III | Car park of the Schools of Civil Engineering and Informatics |
P11 | 43°20′1.23″ S | 8°25′3.59″ W | II | Path in front of Faculty of Law |
P12 | 43°20′7.99″ S | 8°24′54.14″ W | II | Close to Sports Centre |
P13 | 43°19′50.19″ S | 8°24′19.05″ W | I | Monument to Elviña’s Battle |
P14 | 43°19′35.55″ S | 8°24′44.64″ W | III | Slope intercampus road |
P15 | 43°19′42.9″ S | 8°24′37.05″ W | III | Canedo 15, Elviña |
P16 | 43°19′52.23″ S | 8°24′41.22″ W | V | Slope Central Research Service |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | MnO | P2O5 | SrO | BaO | ZrO2 | LOI | Total | Density (kg m−3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 70.04 | 14.96 | 2.66 | 1.12 | 0.45 | 3.32 | 4.54 | 0.21 | 0.05 | 0.07 | 0.03 | 0.06 | <0.001 | 2.35 | 99.88 | 2.646 |
P2 | 71.4 | 13.12 | 3.64 | 1.59 | 0.85 | 2.9 | 3.8 | 0.36 | 0.07 | 0.22 | 0.03 | 0.07 | <0.001 | 1.84 | 99.9 | 2.663 |
P3 | 69.88 | 14.15 | 3.03 | 1.32 | 0.81 | 2.76 | 5.16 | 0.35 | 0.06 | 0.17 | 0.03 | 0.09 | <0.001 | 2.1 | 99.91 | 2.644 |
P4 | 72.73 | 13.96 | 1.99 | 0.36 | 0.39 | 2.81 | 4.34 | 0.25 | 0.02 | 0.08 | 0.01 | 0.04 | <0.001 | 2.93 | 99.92 | 2.656 |
P5 | 71.57 | 14.46 | 2.12 | 0.94 | 0.47 | 3.26 | 4.88 | 0.24 | 0.03 | 0.23 | 0.02 | 0.05 | <0.001 | 1.66 | 99.93 | 2.656 |
P6 | 72.42 | 14.62 | 1.36 | 0.52 | 0.37 | 2.8 | 5.1 | 0.23 | 0.02 | 0.18 | 0.02 | 0.05 | <0.001 | 2.24 | 99.93 | 2.666 |
P7 | 74.36 | 14.37 | 1.22 | 0.2 | 0.15 | 3.26 | 4.28 | 0.05 | 0.03 | 0.08 | 0.01 | 0.02 | <0.001 | 1.93 | 99.96 | 2.674 |
P8 | 71.1 | 14.86 | 2.21 | 0.37 | 0.38 | 3.23 | 5.2 | 0.23 | 0.03 | 0.09 | 0.01 | 0.05 | <0.001 | 2.16 | 99.92 | 2.65 |
P9 | 71.67 | 14.32 | 2.18 | 0.45 | 0.49 | 2.36 | 5.14 | 0.26 | 0.02 | 0.17 | 0.02 | 0.05 | <0.001 | 2.78 | 99.91 | 2.638 |
P10 | 67.29 | 15.7 | 3.3 | 1.69 | 0.85 | 3.59 | 5.34 | 0.35 | 0.08 | 0.17 | 0.05 | 0.09 | <0.001 | 1.42 | 99.92 | 2.679 |
P11 | 68.7 | 16.3 | 1.2 | 1 | 0.44 | 4.9 | 5.4 | 0.19 | 0.024 | 0.22 | 0.009 | <0.008 | 0.013 | 1.5 | 99.948 | 2.656 |
P12 | 67.4 | 17.1 | 1.4 | 0.81 | 0.68 | 4.1 | 6.1 | 0.24 | 0.019 | 0.29 | 0.011 | <0.008 | 0.015 | 1.8 | 100.025 | 2.654 |
P13 | 72.3 | 13.2 | 2.4 | 1.6 | 0.99 | 3.7 | 4.1 | 0.35 | 0.053 | 0.22 | 0.026 | 0.052 | 0.026 | 0.9 | 99.957 | 2.688 |
P14 | 67.2 | 17.1 | 1.4 | 0.75 | 0.47 | 4.8 | 5.3 | 0.23 | 0.027 | 0.25 | 0.015 | <0.008 | 0.014 | 1.9 | 99.575 | 2.672 |
P15 | 62.9 | 19.1 | 1.7 | 1.3 | 0.56 | 4.4 | 7.4 | 0.22 | 0.039 | 0.1 | 0.032 | 0.12 | 0.018 | 1.8 | 99.777 | 2.635 |
P16 | 53.7 | 21.1 | 8.1 | 0.43 | 1.3 | 1.2 | 5.2 | 0.71 | 0.032 | <0.005 | 0.014 | 0.05 | 0.071 | 7.6 | 99.578 | 2.619 |
Mean | 69.04 | 15.53 | 2.49 | 0.90 | 0.60 | 3.34 | 5.08 | 0.28 | 0.04 | 0.17 | 0.02 | 0.06 | - | 2.31 | 99.88 | 2.66 |
Sd | 4.97 | 2.17 | 1.67 | 0.49 | 0.29 | 0.94 | 0.85 | 0.14 | 0.02 | 0.07 | 0.01 | 0.03 | - | 1.50 | 0.13 | 0.02 |
Scheme | GRS | GRS with Collimator | XRF + ICPMS | ||||||
---|---|---|---|---|---|---|---|---|---|
U (ppm) | Th (ppm) | K (%) | U (ppm) | Th (ppm) | K (%) | U (ppm) | Th (ppm) | K (%) | |
P1 | 16.7 | 46.6 | 4.63 | 20.3 | 45.4 | 4.38 | 24.9 | 36.5 | 3.77 |
P2 | 12.2 | 44.9 | 4.24 | 14.7 | 45.4 | 4.26 | 20.7 | 52.1 | 3.15 |
P3 | 18.9 | 45.4 | 4.27 | 22.5 | 43.6 | 4.17 | 15 | 42.4 | 4.28 |
P4 | 7.2 | 17.6 | 4.65 | 9.4 | 17.1 | 4.38 | 16.25 | 25.5 | 3.60 |
P5 | 10.3 | 19.8 | 4.23 | 13 | 18.3 | 3.95 | 12.15 | 24.4 | 4.05 |
P6 | 11.9 | 24.3 | 4.7 | 16.3 | 22.1 | 4.28 | 16.5 | 22.9 | 4.23 |
P7 | 14.8 | 50.5 | 5.16 | 17.4 | 53.7 | 5.16 | 2.35 | 4.68 | 3.55 |
P8 | 11.5 | 23.2 | 4.52 | 14.2 | 21.8 | 4.26 | 12.35 | 22 | 4.32 |
P9 | 9.8 | 25.4 | 5.08 | 11.3 | 24.5 | 5.43 | 14.4 | 26.4 | 4.27 |
P10 | 14.5 | 46.4 | 4.48 | 17.9 | 48.7 | 4.05 | 10.35 | 61.2 | 4.43 |
P11 | 9.1 | 20.7 | 4.78 | 11.9 | 23.3 | 4.72 | 9.83 | 19.15 | 3.23 |
P12 | 8.5 | 23.2 | 4.21 | 11.1 | 23.6 | 3.65 | 17.5 | 21.7 | 3.64 |
P13 | 11.5 | 57.1 | 6.23 | 13.4 | 54.1 | 6.4 | 14.45 | 49.6 | 2.45 |
P14 | 18.2 | 31.9 | 6.77 | 23 | 30 | 6.68 | 22 | 23.2 | 3.17 |
P15 | 33.8 | 106.8 | 12.76 | 9.9 | 26.7 | 2.54 | 15 | 33.6 | 4.42 |
P16 | 17.1 | 60.2 | 6.71 | 23 | 67.3 | 6.35 | 24 | 73.1 | 3.11 |
Mean | 14.13 | 40.25 | 5.46 | 15.48 | 33.65 | 3.73 | 15.58 | 35.35 | 4.67 |
Sd | 6.34 | 22.78 | 2.12 | 5.72 | 17.80 | 0.59 | 4.66 | 15.59 | 1.10 |
Sample | GRS | GRS with Collimator | XRF + ICP-MS | GRS/GRS with Collimator | GRS/XRF + ICP-MS | GRS with Collimator/XRF + ICP-MS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th/U | K/U | Th/U | K/U | Th/U | K/U | U/U | Th/Th | K/K | U/U | Th/Th | K/K | U/U | Th/Th | K/K | |
P1 | 0.68 | 3.61 | 0.36 | 4.63 | 0.45 | 6.61 | 0.82 | 1.03 | 1.24 | 0.67 | 1.28 | 1.23 | 0.82 | 1.24 | 1.16 |
P2 | 0.40 | 2.88 | 0.27 | 3.45 | 0.32 | 6.56 | 0.83 | 0.99 | 0.87 | 0.59 | 0.86 | 1.34 | 0.71 | 0.87 | 1.35 |
P3 | 0.35 | 4.43 | 0.42 | 5.40 | 0.52 | 3.50 | 0.84 | 1.04 | 1.03 | 1.26 | 1.07 | 1.00 | 1.50 | 1.03 | 0.97 |
P4 | 0.64 | 1.55 | 0.41 | 2.15 | 0.55 | 4.51 | 0.77 | 1.03 | 0.67 | 0.44 | 0.69 | 1.29 | 0.58 | 0.67 | 1.22 |
P5 | 0.50 | 2.43 | 0.52 | 3.29 | 0.71 | 3.00 | 0.79 | 1.08 | 0.75 | 0.85 | 0.81 | 1.04 | 1.07 | 0.75 | 0.98 |
P6 | 0.72 | 2.53 | 0.49 | 3.81 | 0.74 | 3.90 | 0.73 | 1.10 | 0.97 | 0.72 | 1.06 | 1.11 | 0.99 | 0.97 | 1.01 |
P7 | 0.50 | 2.87 | 0.29 | 3.37 | 0.32 | 0.66 | 0.85 | 0.94 | 11.47 | 6.30 | 10.79 | 1.45 | 7.40 | 11.47 | 1.45 |
P8 | 0.56 | 2.54 | 0.50 | 3.33 | 0.65 | 2.86 | 0.81 | 1.06 | 0.99 | 0.93 | 1.05 | 1.05 | 1.15 | 0.99 | 0.99 |
P9 | 0.55 | 1.93 | 0.39 | 2.08 | 0.46 | 3.38 | 0.87 | 1.04 | 0.93 | 0.68 | 0.96 | 1.19 | 0.78 | 0.93 | 1.27 |
P10 | 0.17 | 3.24 | 0.31 | 4.42 | 0.37 | 2.34 | 0.81 | 0.95 | 0.80 | 1.40 | 0.76 | 1.01 | 1.73 | 0.80 | 0.91 |
P11 | 0.51 | 1.90 | 0.44 | 2.52 | 0.51 | 3.05 | 0.76 | 0.89 | 1.22 | 0.93 | 1.08 | 1.48 | 1.21 | 1.22 | 1.46 |
P12 | 0.81 | 2.02 | 0.37 | 3.04 | 0.47 | 4.80 | 0.77 | 0.98 | 1.09 | 0.49 | 1.07 | 1.16 | 0.63 | 1.09 | 1.00 |
P13 | 0.29 | 1.85 | 0.20 | 2.09 | 0.25 | 5.90 | 0.86 | 1.06 | 1.09 | 0.80 | 1.15 | 2.54 | 0.93 | 1.09 | 2.61 |
P14 | 0.95 | 2.69 | 0.57 | 3.44 | 0.77 | 6.95 | 0.79 | 1.06 | 1.29 | 0.83 | 1.38 | 2.14 | 1.05 | 1.29 | 2.11 |
P15 | 0.45 | 2.65 | 0.32 | 3.90 | 0.37 | 3.39 | 3.41 | 4.00 | 3.18 | 2.25 | 3.18 | 2.89 | 3.41 | 3.18 | 2.89 |
P16 | 0.33 | 2.55 | 0.28 | 3.62 | 0.34 | 7.72 | 0.74 | 0.89 | 0.92 | 0.71 | 0.82 | 2.16 | 0.96 | 0.92 | 2.04 |
Mean | 0.53 | 2.60 | 0.38 | 3.41 | 0.49 | 4.56 | 0.80 | 1.01 | 1.04 | 0.81 | 1.00 | 1.41 | 1.01 | 0.99 | 1.37 |
Sd | 0.20 | 0.73 | 0.10 | 0.93 | 0.16 | 1.75 | 0.04 | 0.07 | 0.06 | 0.27 | 0.20 | 0.48 | 0.32 | 0.19 | 0.50 |
R | 0.88 | 0.85 | 0.62 | 0.47 | 0.48 | −0.38 | 0.98 | 0.99 | 0.97 | 0.50 | 0.90 | −0.62 | 0.54 | 0.93 | −0.64 |
Sample | Estimated HGP | Ratio of Estimated HGPs | ||||
---|---|---|---|---|---|---|
GRS | GRS Collimator | XRF + ICP-MS | GRS/GRS Collimator | GRS/XFR + ICPMS | GRS Collimator/FRX + ICPMS | |
P1 | 7.78 | 8.60 | 9.13 | 0.90 | 0.85 | 0.94 |
P2 | 6.53 | 7.21 | 9.13 | 0.91 | 0.72 | 0.79 |
P3 | 8.23 | 9.02 | 7.03 | 0.91 | 1.17 | 1.28 |
P4 | 3.40 | 3.91 | 6.18 | 0.87 | 0.55 | 0.63 |
P5 | 4.32 | 4.89 | 5.09 | 0.88 | 0.85 | 0.96 |
P6 | 5.09 | 6.04 | 6.14 | 0.84 | 0.83 | 0.98 |
P7 | 7.68 | 8.57 | 1.20 | 0.90 | 6.39 | 7.13 |
P8 | 4.87 | 5.44 | 4.99 | 0.89 | 0.98 | 1.09 |
P9 | 4.60 | 4.95 | 5.78 | 0.93 | 0.80 | 0.86 |
P10 | 7.29 | 8.29 | 7.22 | 0.88 | 1.01 | 1.15 |
P11 | 4.11 | 5.00 | 4.07 | 0.82 | 1.01 | 1.23 |
P12 | 4.08 | 4.73 | 6.25 | 0.86 | 0.65 | 0.76 |
P13 | 7.40 | 7.70 | 7.36 | 0.96 | 1.01 | 1.05 |
P14 | 7.41 | 8.51 | 7.52 | 0.87 | 0.99 | 1.13 |
P15 | 16.79 | 4.52 | 6.43 | 3.72 | 2.61 | 0.70 |
P16 | 8.87 | 8.60 | 11.21 | 0.82 | 0.79 | 0.96 |
Mean | 6.14 | 6.77 | 6.54 | 0.89 | 0.88 | 0.97 |
Sd | 1.80 | 2.06 | 2.25 | 0.04 | 0.16 | 0.19 |
R | 0.99 | 0.80 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjurjo-Sánchez, J.; Barrientos Rodríguez, V.; Arce Chamorro, C.; Alves, C. Estimating the Radioactive Heat Production of a Granitic Rock in the University of A Coruña (Galicia, Northwest Spain) by Gamma-ray Spectrometry. Appl. Sci. 2022, 12, 11965. https://doi.org/10.3390/app122311965
Sanjurjo-Sánchez J, Barrientos Rodríguez V, Arce Chamorro C, Alves C. Estimating the Radioactive Heat Production of a Granitic Rock in the University of A Coruña (Galicia, Northwest Spain) by Gamma-ray Spectrometry. Applied Sciences. 2022; 12(23):11965. https://doi.org/10.3390/app122311965
Chicago/Turabian StyleSanjurjo-Sánchez, Jorge, Victor Barrientos Rodríguez, Carlos Arce Chamorro, and Carlos Alves. 2022. "Estimating the Radioactive Heat Production of a Granitic Rock in the University of A Coruña (Galicia, Northwest Spain) by Gamma-ray Spectrometry" Applied Sciences 12, no. 23: 11965. https://doi.org/10.3390/app122311965